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How abstract is linguistic 
generalization in LLMS? 
Evidence from Argument Structure
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• Question: Do language models have a linguistically-principled 
understanding of the language they’ve learned?

• What do humans know when they know a language?

• How can we test for similar behavior in LLMs by teaching them new 
words?

• Conclusion: LLMs’s knowledge of language differs from humans’ in a 
way that leads to “failures” of the functional generalizations which 
humans can readily make use of
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• BERT-like models are capable of generalizing beyond purely-
distributional knowledge for nouns of fixed thematic roles (T1)

• They’re able to do this by bootstrapping their knowledge of existing 
plausible terms:

• placing novel tokens inside parts of their embedding space which are 
similar to other plausible completions

• This embedding subspace is functionally useful for linguistic 
generalizations!

• What about T2 generalization?

Experiment 1: Summary
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• We actually observe a similar sensitivity to linear ordering in 
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Echoes of linearity

BERT RoBERTa DistilBERT

same order 93% 83% 88%
reversed order 86% 79% 78%

Δ 7 pts 4 pts 10 pts



Experiment 2: Summary



• Models don’t seem to display T2 generalization of argument structure 
to arbitrary verbs regardless of thematic role

Experiment 2: Summary



• Models don’t seem to display T2 generalization of argument structure 
to arbitrary verbs regardless of thematic role

• One possible reason: unlike with T1 generalization, there isn’t anything 
to bootstrap knowledge onto

Experiment 2: Summary



• Models don’t seem to display T2 generalization of argument structure 
to arbitrary verbs regardless of thematic role

• One possible reason: unlike with T1 generalization, there isn’t anything 
to bootstrap knowledge onto

• By design, our novel verbs have unique selection preferences

Experiment 2: Summary



• Models don’t seem to display T2 generalization of argument structure 
to arbitrary verbs regardless of thematic role

• One possible reason: unlike with T1 generalization, there isn’t anything 
to bootstrap knowledge onto

• By design, our novel verbs have unique selection preferences

• No existing embedding which matches these values

Experiment 2: Summary



• Models don’t seem to display T2 generalization of argument structure 
to arbitrary verbs regardless of thematic role

• One possible reason: unlike with T1 generalization, there isn’t anything 
to bootstrap knowledge onto

• By design, our novel verbs have unique selection preferences

• No existing embedding which matches these values

• Unable to make generalizations on the basis of structure alone, 
independent from a known similar context

Experiment 2: Summary
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Questions?

Thank you to for coming to our talk!


