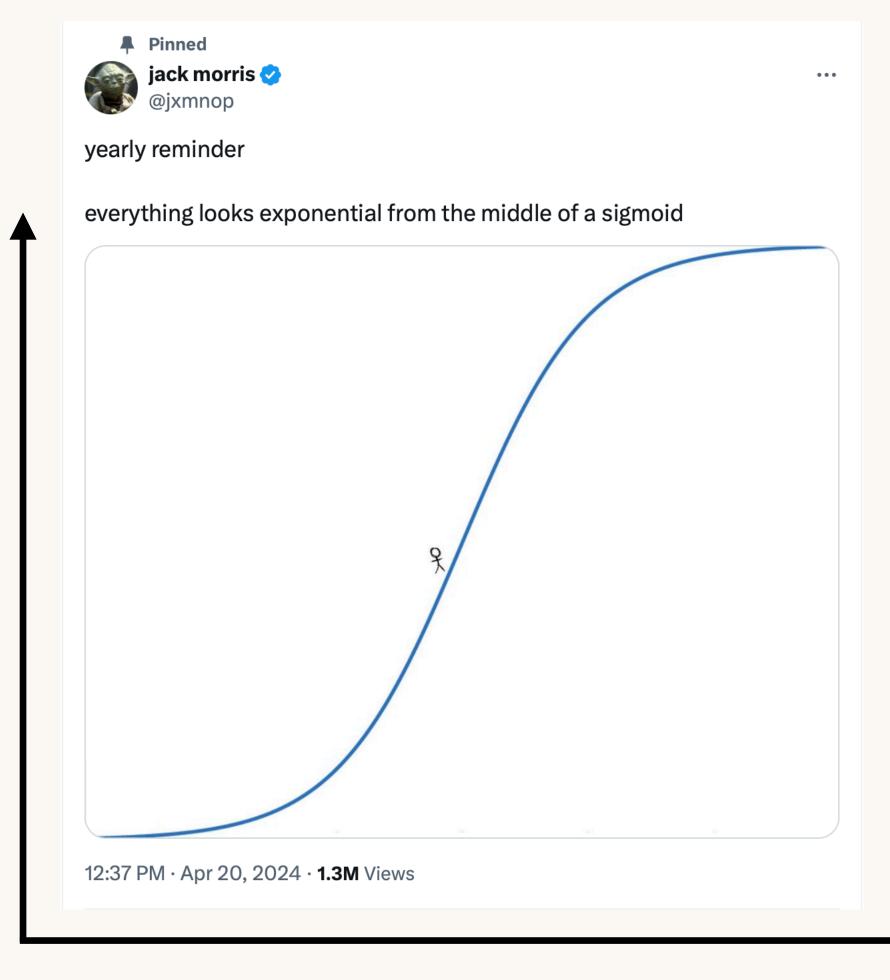
BlackBoxNLP @ EMNLP '24

How does code pretraining affect LLM task performance?

Jackson Petty^{1*}, Sjoerd van Steenkiste², and Tal Linzen²

* Work done as a Student Researcher at Google Research

A brief history of LLM research



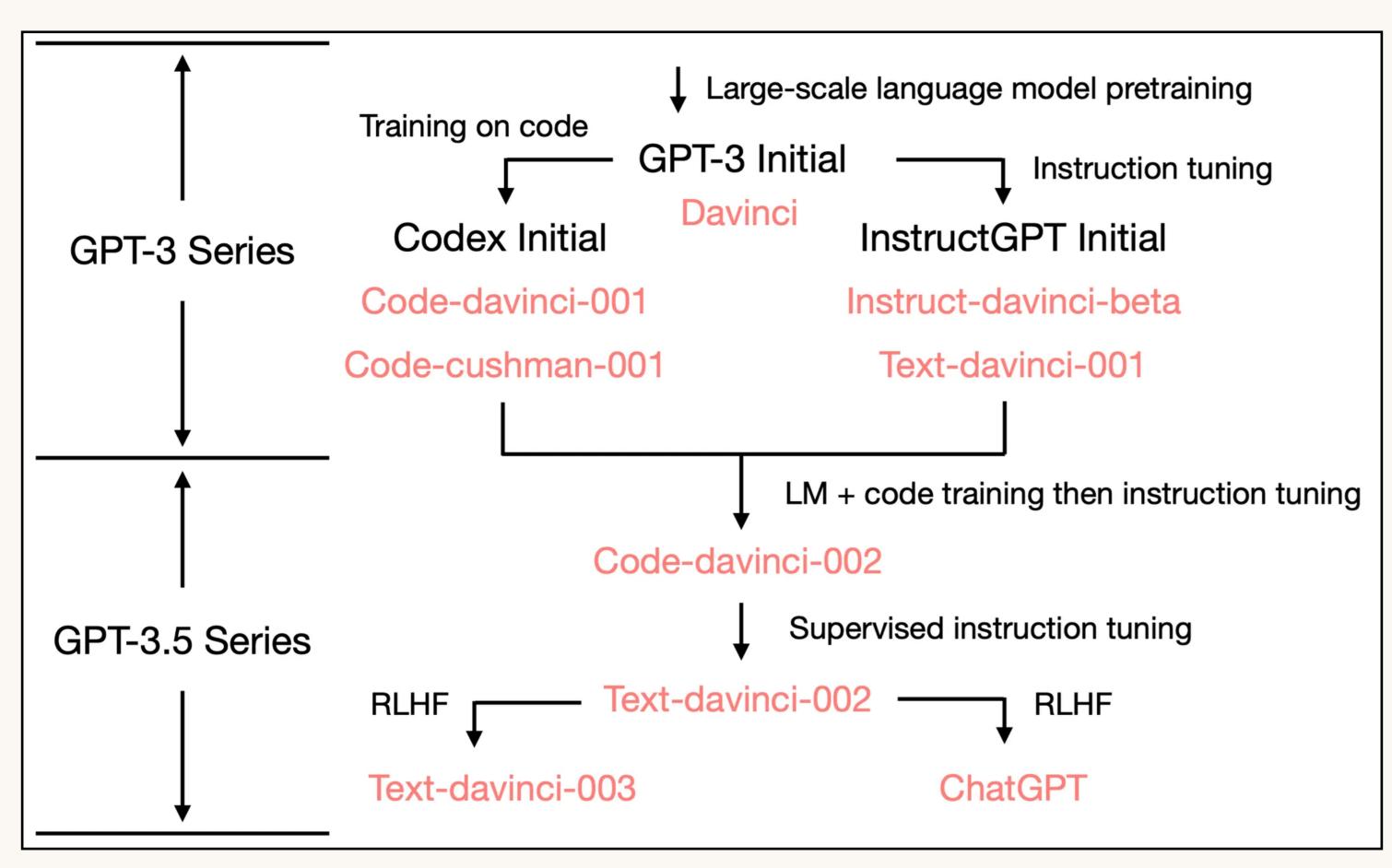
Many things get better with time

It's not always clear why, in hindsight

Historically, adding in code → many improvements in LM performance

Time

What made GPT-3.5 so good?



- Instruction following
- Zero/few-show generalization
- "Reasoning"/Chain-of-Thought

Why might code help LLMs?

Intrinsically:

- Code instantiates many compositional patterns (variable reuse, positional argument structure, literal function composition)
- High quality, low entropy
- Maybe "programming" captures something fundamental:

Once a programmer knows what to build, the act of writing code can be thought of as (1) breaking a problem down into simpler problems, and (2) mapping those simple problems to existing code (libraries, APIs, or functions) that already exist. The latter activity is probably the least fun part of programming (and the highest barrier to entry), and it's where OpenAI Codex excels most.

How to measure the impact of code?

Hypothesis: training on code will improve LLM performance on downstream tasks (more than the alternative)

We must control for a lot to test this!

- Model size, dataset size, training hyperparameters...
- Makes observational studies of existing models difficult:
 - Need access to paired models
 - Need to know how models were trained

What is compositional generalization?

Compositionality is the "infinite use of finite means"

(von Humboldt 1836; Chomsky 1965)

Generalize from known pieces to (infinite) novel, well-formed combinations

Training input (hedgehog is subject)	Output
the hedgehog ate the cake	eat(agent=hedgehog, theme=cake)
the hedgehog saw a child	see(agent=hedgehog, theme=child)
hedgehogs swim →	swim(agent=hedgehog)

Semantic parsing example from COGS (vf)

What is compositional generalization?

Compositionality is the "infinite use of finite means"

(von Humboldt 1836; Chomsky 1965)

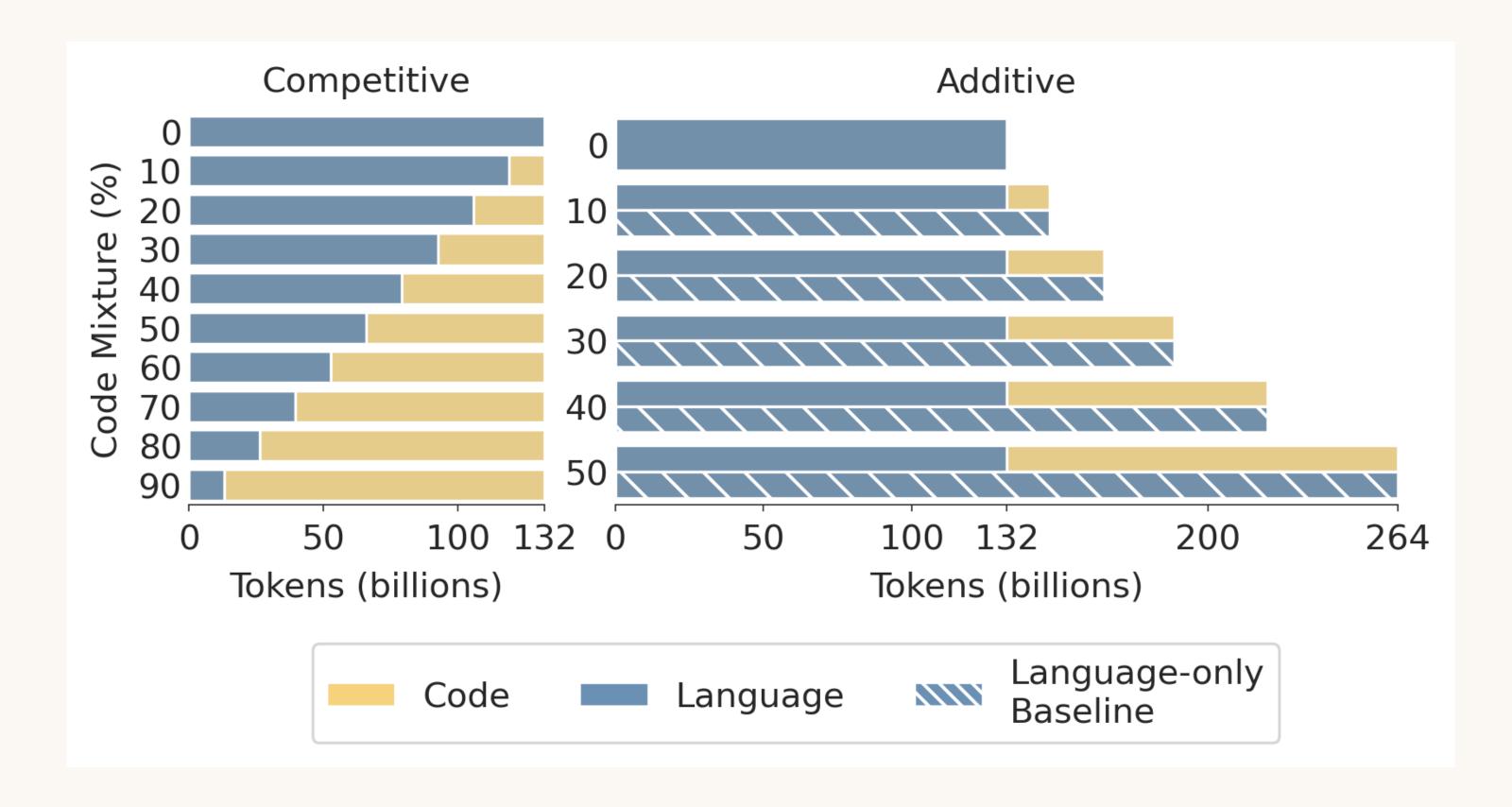
Generalize from known pieces to (infinite) novel, well-formed combinations

Training input (hedgehog is subject)	Output
the hedgehog ate the cake the hedgehog saw a child hedgehogs swim	eat(agent=hedgehog, theme=cake) see(agent=hedgehog, theme=child) swim(agent=hedgehog)
Generalization (hedgehog is object)	
the boy loves the hedgehog	love(agent=boy, theme=hedgehog)

Semantic parsing example from COGS (vf)

Experimental setup

1. Pretrain (decoder-only) LLMs on mixtures of code (GitHub) and language (C4) in two settings



Experimental setup

- 1. Pretrain (decoder-only) LLMs on mixtures of code (GitHub) and language (C4) in two settings
- 2. Finetune each pretrained LLM on compositional-generalization datasets, measure generalization performance

COGS	x : A hedgehog ate the cake . y : *cake(x_4); hedgehog(x_1) AND eat.agent(x_2, x_1) AND eat.theme(x_2, x_4)	
COGS-vf	x: A hedgehog ate the cake on the bed . y : eat(agent = hedgehog, theme = *cake(nmod.on = *bed))	
English Passivization	$x\colon \text{ our vultures admired her walrus above some zebra}$. $y\colon \text{ her walrus above some zebra was admired by our vultures}$.	

Experimental setup

- 1. Pretrain (decoder-only) LLMs on mixtures of code (GitHub) and language (C4) in two settings
- 2. Finetune each pretrained LLM on compositional-generalization datasets, measure generalization performance
- 3. Evaluate each pretrained LLM on BigBench tasks

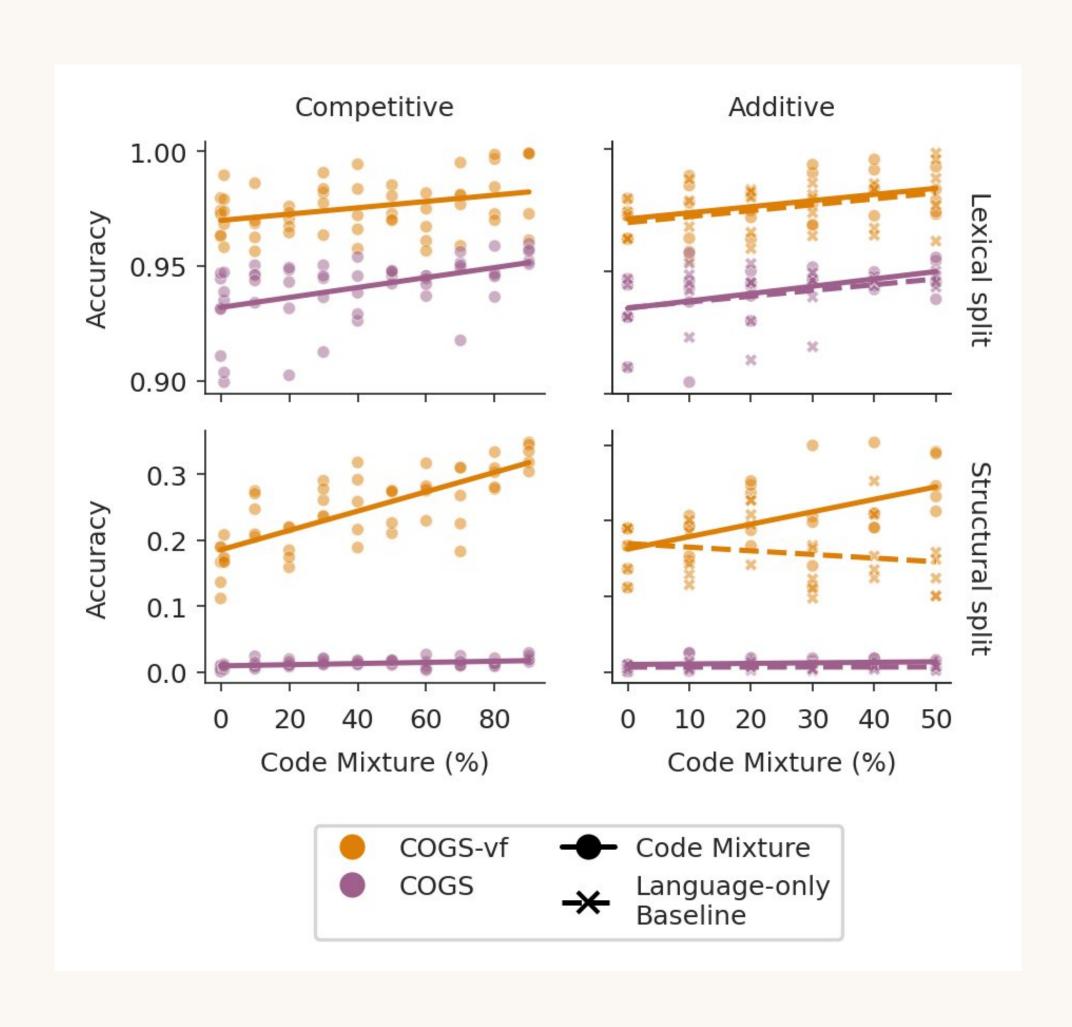
```
What is 42812 times 51570?
(a) 8127851667
```

- (b) 9415523281
- (c) 47549647
- (d) 854486182733
- (e) banana
- (f) house
- (g) 2207814840

```
What is the common morpheme among these words: biology, antibiotic, symbiosis, amphibian?
```

- (a) disease
- (b) life
- (c) study
- (d) animal

Result #1: Semantic parsing



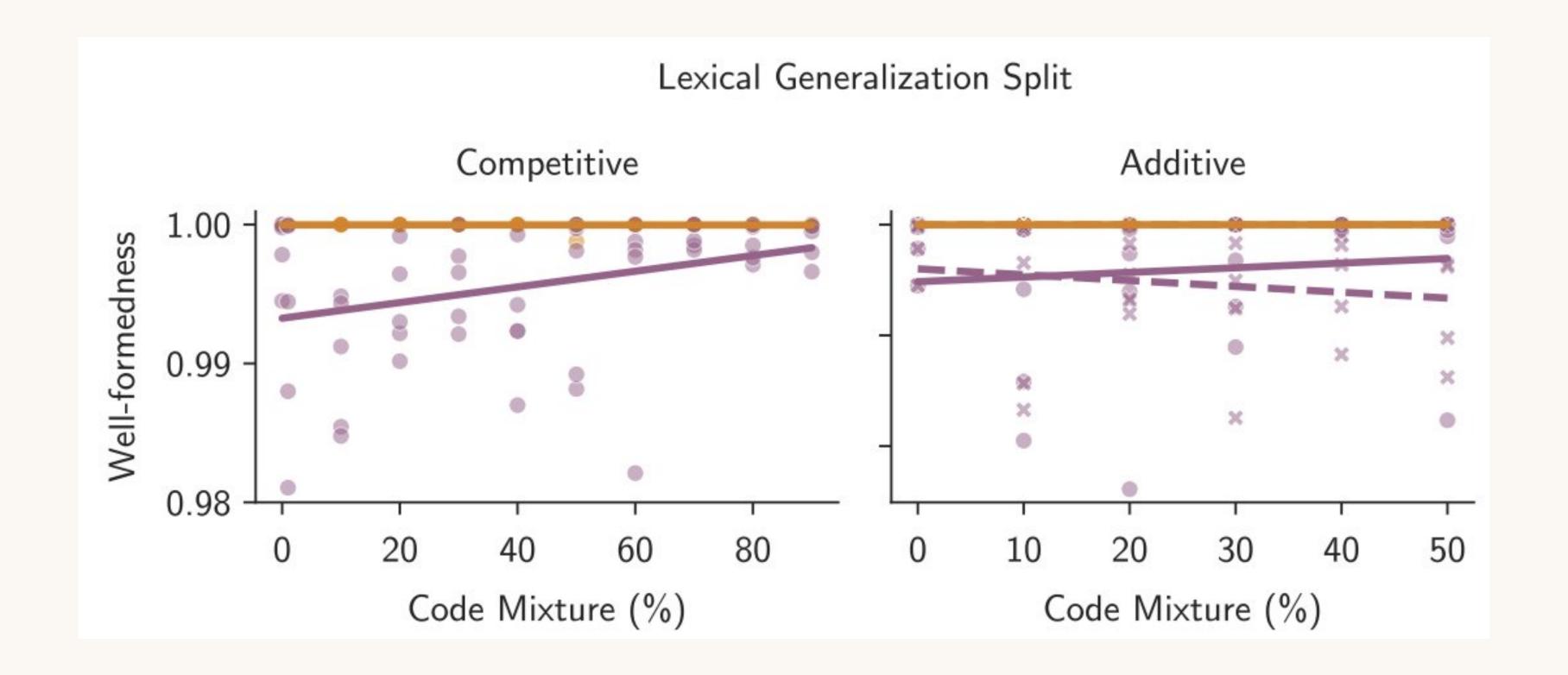
Code-pretraining helps on semantic parsing tasks!

Most noticeable in the "hard" split of COGS-vf

Doesn't move the needle on the "hard" split of COGS

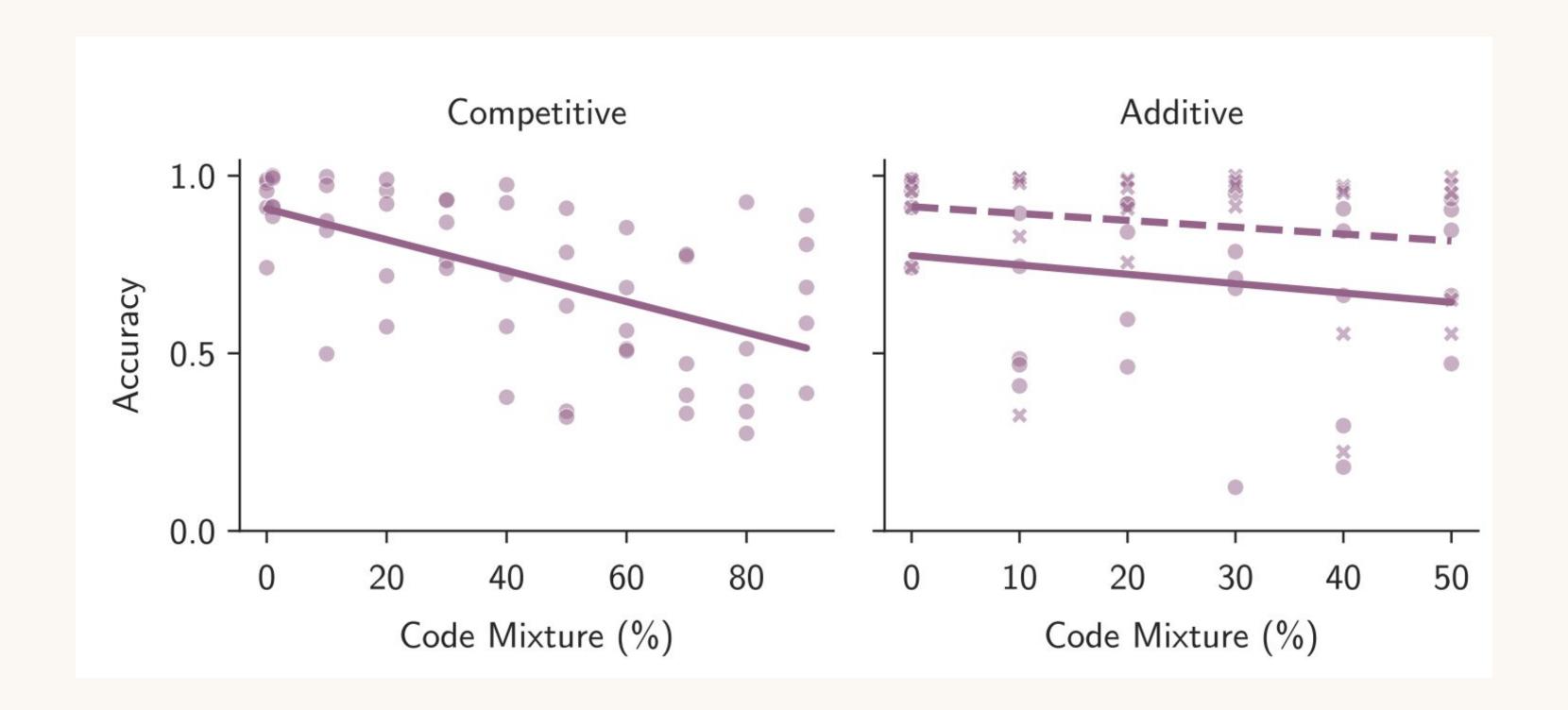
Result #2: Well-formedness

Code actually helps with distributional compositionality, not (just) with well-formedness!



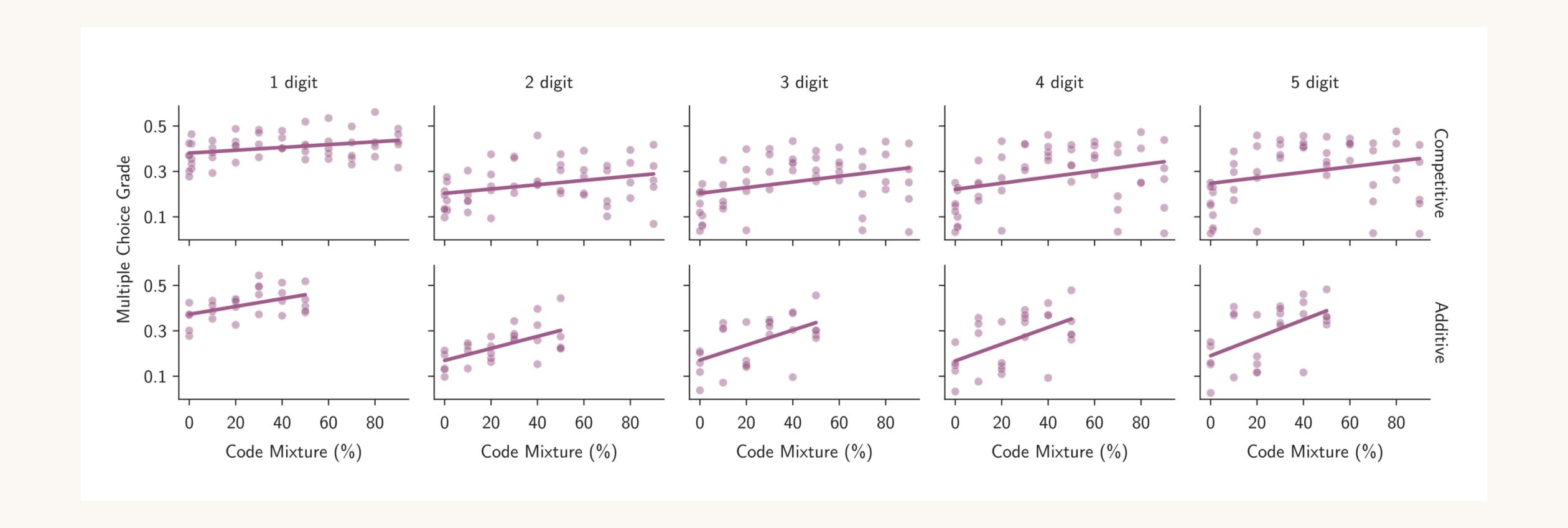
Result #3: NL compositionality

Code harms performance on "natural-language only" compositional generalization (English Passivization)



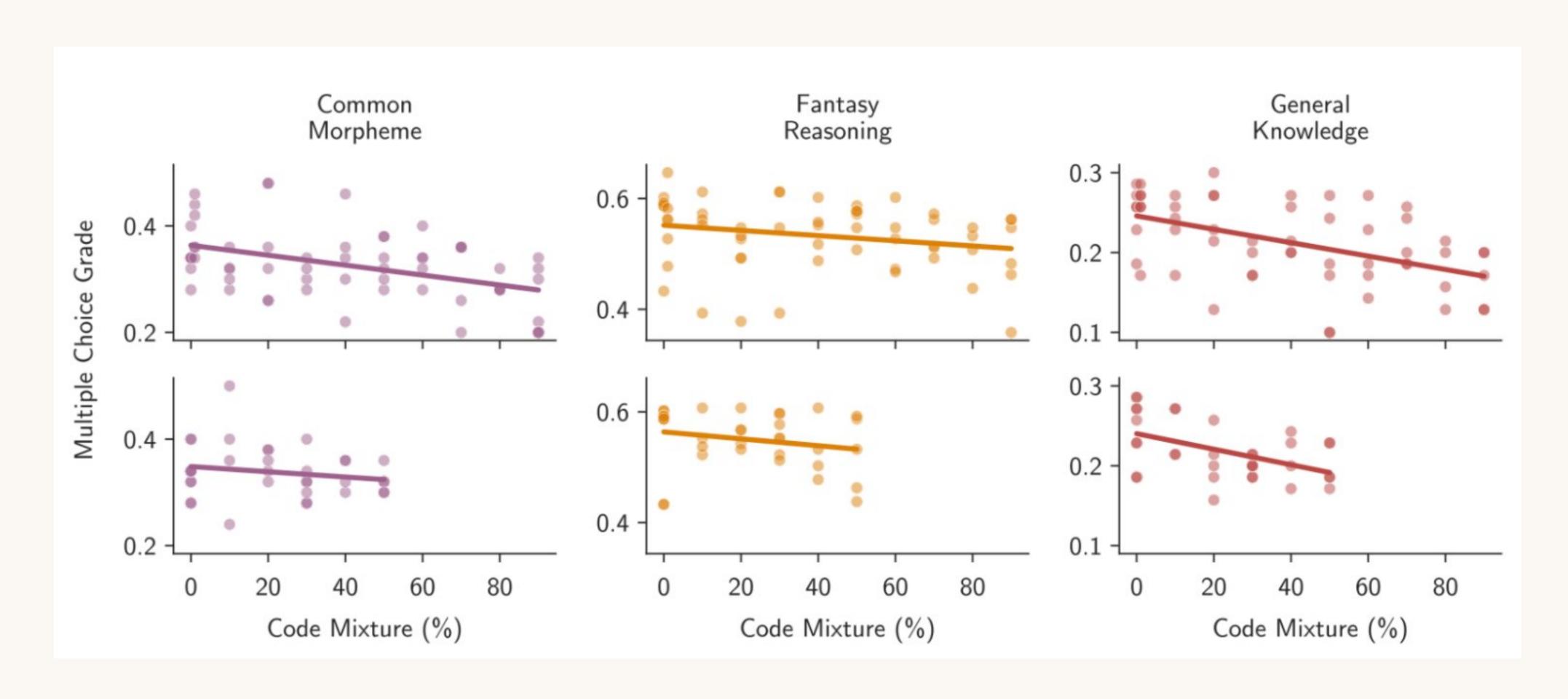
Result #4: Arithmetic

Code improves accuracy on multi-digit arithmetic



Result #5: "Knowledge"

Code hurts on BB tasks that require linguistic- or world-knowledge



Summary

Code helps :)		Code hurts :(
Compositional	Parsing	Natural-language transformations	
Non-compositional	Arithmetic	World knowledge Linguistic knowledge	

Thanks!

Come say "hi" at EMNLP:)

Appendix A: COGS Splits

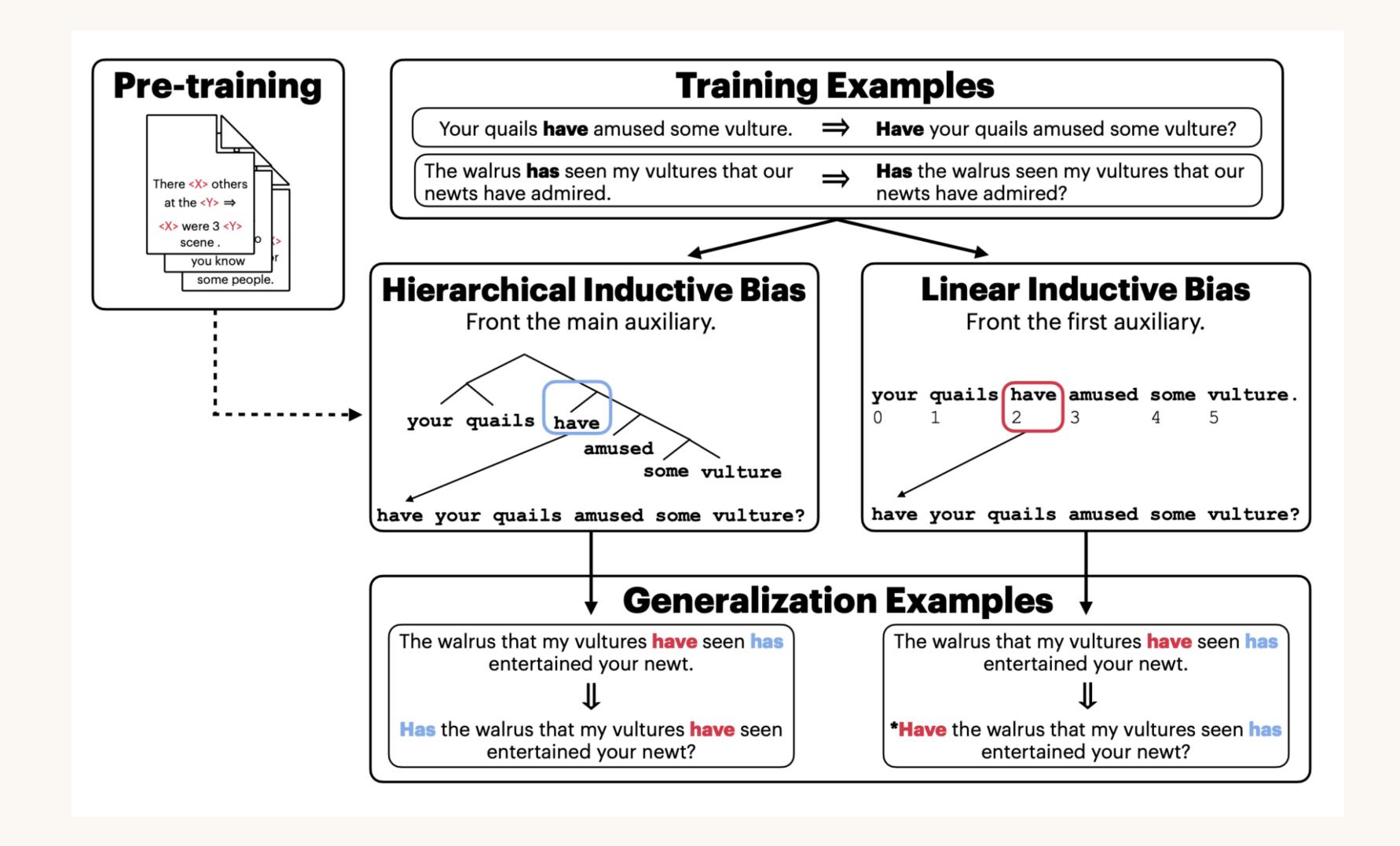
Lexical Generalization: use a known word in a new context

	S.3.2. Novel Combination Modified Phrases and Grammatical Roles		
O	bject modification → Subject modification	Noah ate the cake on the plate.	The cake on the table burned.

Structural Generalization: extend known structures to be more complicated

S.3.3. Deeper Recursion		
Depth generalization: Sentential complements	Emma said that Noah knew that the cat danced.	Emma said that Noah knew that Lucas saw that the cat danced.
Depth generalization: PP modifiers	Ava saw the ball in the bottle on the table.	Ava saw the ball in the bottle on the table on the floor.

Appendix B: Passivization



Appendix C: BigBench Tasks

What is 42812 times 51570?

- (a) 8127851667
- (b) 9415523281
- (c) 47549647
- (d) 854486182733
- (e) banana
- (f) house
- (g) 2207814840

(b) life
(c) study

(a) disease

(d) animal

On which continent would one find the Nile River?

- (a) Africa
- (b) Asia
- (c) South America
- (d) North America
- (e) Europe

A man is offered one wish and he says that he wants to be fire proof. His wish is granted. The same man and a woman are in a house. What will happen if the house lights up on fire? Will the man be hurt by the fire?

What is the common morpheme among

these words: biology, antibiotic,

symbiosis, amphibian?

- (a) Yes
- (b) No

Appendix D: Permutation Tests

Could the BB results have arisen due to random chance?

