The Impact of Depth on Compositional Generalization in Transformer Language Models

Jackson Petty^{1*}, Sjoerd van Steenkiste², Ishita Dasgupta³, Fei Sha², Dan Garrette³, and Tal Linzen²

* Work done as a Student Researcher at Google Research

Question: Are deeper models more *compositional*, independent of total parameter count?

1. What is compositionality?

Generalize from **known pieces** to **(infinite) novel, well-formed combinations**

Necessary for semantic parsing (see COGS (vf) below), NLU, code generation, & more

Training input (hedgehog is subject)	nining input (hedgehog is subject) Output	
the hedgehog ate the cake		eat(agent=hedgehog , theme=cake)
the hedgehog saw a child		see(agent=hedgehog , theme=child)
hedgehogs swim	\rightarrow	swim(agent=hedgehog)

Generalization (hedgehog is object) the boy loves the **hedgehog**

love(agent=boy, theme=hedgehog)

2. Why might depth help?

Theory:

Expressive capacity is exponential in depth
Each layer does successive function application

4. Experimental setup

Pretrain+finetune models of different depths within three size classes: 41M, 134M, and 374M parameters

dataset	type	metric
C4-en	language modeling	validation loss
COGS	semantic parsing	
COGS (variable free)	semantic parsing	full-sequence generalization accuracy
GeoQuery	SQL generation	
English Passivization (EP)	natural language transformation	

5. Results: diminishing returns

Depth helps language modeling and compositional generalization, but *marginal utility drops fast* beyond ~ 6 layers

Empirically: Reducing depth harms linguistic generalization more than reducing width does

3. Controlling for # of parameters

Depth & total # of parameters are usually correlated

Many things improve w/ more parameters, so we must control for this confounder

6. Depth is expensive

ttive secs/step (←) 1.8 1.6 1.4 1.2

Latency/cost is *linear* in depth, but performance is *sub-linear*

2× slower doesn't buy 2× better performance

Once a model is "deep enough," choosing

depth over width is not efficient

Answer: Up to a point.

Depth aids compositionality and language modeling, but diminishing returns & linear latency cost mean choosing depth over width is an expensive choice beyond the first few layers.

