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1. What a Transformer Is
2. Why they are incredibly popular
J. Where they are used

4. Problems & Solutions



Whence the Transformer
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reproduce the tables and figures in this paper solely for use in journalistic or
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Attention Is All You Need




Transformer Architecture
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Why were transformers so
revolutionary?



Parallel Training
Recurrent Models have an inherent ...
recurrence in their sequence dimension

-> training time Is proportional to sequence
length

Transformers: No recurrence = parallelism!



Performance!

English German Translation quality

GNMT (RNN) ConvS2S (CNN) SliceNet (CNN) Transformer
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Current Status: Yes
Time Remaining: 1002d 19h 59m 21s

Proposition:

On January 1, 2027, a Transformer-like model will continue to hold the state-of-the-art position in most
benchmarked tasks in natural language processing.
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Iransformers: Where are
they now?




Basically everywhere

GPT (ChatGPT) [Decoder-only]
Claude, Gemini (probably?)

BERT, Pythia, OLMo, T5 (Open
source!)



Problems with Transformers



Inference Cost

— Transformers are parallel @ training time, but
autoregressive at inference

— Attention is expensive: Quadratic complexity in
sequence length

— RNNs are actually better here!
- $$$ for long generations



Length Generalization

— Transformers don't have any inherent notion
of sequential position

— Traditional positional encodings don't seem
to yield good length generalizations

— Context lengths are getting quite long these
days...



Representational Power

— Transformers are actually weaker
than RNNSs, in terms of what kind of
functions they can learn to express
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Solutions?

— Simplify attention mechanism to sub-quadratic complexity?
— Sliding windows, approximations, etc

— New kinds of positional encodings
— ROPE, Alibi

— New model architectures?

— "Linear State Space models" ("parallelized RNNs" like
Mamba), but see Merrill, Petty, Sabharwal (forthcoming)



Kitchen Sink
Model? (Jamba,
~6 days old)
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Figure 1: (a) A single Jamba block. (b) Different types of layers. The implementation shown here is
withl =8, a : m = 1 : 7 ratio of attention-to-Mamba layers, and MoE applied every e = 2 layers.
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