LING-UA 1 Language Language Models & Linguistics

Jackson Petty

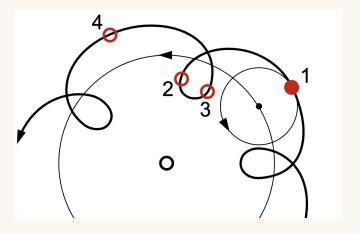
Department of Linguistics
SILV #104

2:00PM, 9 October 2025

What does it mean to know a language?

- ► Humans can...
 - produce unbounded novel constructions
 - discern grammaticality on the basis of invisible structure
 - assign & interpret meaning to utterances (~compositionally)
 - acquire these skills from "naturalistic" training data
- This argues for Universal Grammar
 - Human language faculty "bakes in" many assumptions about how Language works
 - enables "rapid" acquisition from small amounts of input

"Knowing a Language" is really valuable!


- Lots of tasks which require linguistic knowledge:
 - Translation
 - Document summarization
 - Question-answering
 - Automated writing
- Could we use our understanding of UG to build a computational system that uses natural language?

Empirically: not very well :(

The Old Approach to NLP

- How Natural Language Processing used to work:
 - Build parser-like systems that function like akin to how human language processing (must) work
 - Every time you encounter an edge case?
 Add explicit rules to deal with it
- This approach has some problems:
 - It's very brittle, and human language has lots of...fuzziness
 - misspelling, dialectal variation, slang, emojis, non-linguistic data (numbers, pictures)
 - The complexity of the system grows monotonically
 - Requires highly-annotated data to identify invisible structure

NLP, c. 2010: "Just add more epicycles!"

A new approach

- ▶ What if we got rid of ~*every* structural assumption?
- ► The **only** thing we care about: *predicting the next word*

[BOS] ___

[BOS] an apple boy eats the

[BOS] ___


```
[BOS] The ___
```

```
[BOS] an apple boy eats the
```

[BOS] The ____


```
[BOS] The boy ___
```

```
[BOS] an apple boy eats the .
```

```
[BOS] The boy ___
```



```
[BOS] The boy eats ___
```

```
[BOS] an apple boy eats the .
```

[BOS] The boy eats ___


```
[BOS] The boy eats an ___
```

```
[BOS] an apple boy eats the .
```

[BOS] The boy eats an ___


```
[BOS] The boy eats an apple ___
```

```
[BOS] an apple boy eats the .
```

```
[BOS] The boy eats an apple ___
```


Language Models

- Language models work by predicting "next-word" probabilities
 - a function which tells you the probabilities of new words given a partial sentence
 - they make no assumptions about "structure" or "meaning" or anything like that
- How do we estimate these probabilities?
 - Get a bunch of data
 - 2. Compress data into a probabilistic model [magic happens]
 - 3. Use this compressed model to predict probabilities for new text

Two Kinds of Language Model

- n-gram Model (n = 2, 3, ...)
 - ► Take every possible 2-word (3-word) pair, eg, ("the", "boy")
 - Measure how of often that pair appears in a corpus
 - This becomes your estimate of the probability for the boy!

Neural language model

- Stack a bunch of matrices with random values in them= neural network (greatly simplified)
- Use this stack to predict sequences from a corpus (very bad!)
- Measure how wrong those predictions are, apply calculus to change the values in the matrix
- Repeat trillions of times

Why Language Models?

- They work shockingly well
- They don't need highly-annotated data (= self-supervision)
- Quality scales with amount of data and compute (highly fungible)
- Handle the "fuzziness" of language (more) gracefully

What does this mean?

- Do LMs "know" the same thing as people?
- Are LMs good models of human language acquisition?
- Why did this probabilistic approach succeed where the linguistically-informed, rule-based approach failed?

What does this mean?

- ► Do LMs "know" the same thing as people?
- Are LMs good models of human language acquisition?
- Why did this probabilistic approach succeed where the linguistically-informed, rule-based approach failed?

Do LMs "know" the same thing as people?

- LMs seem to generate plausible text
- How can we compare LM-text to human-generated text?
 - UG makes claims about how humans generalize to new data
 - → does an LM make the same generalizations?
 - Measure this by looking at specific linguistic phenomena

Example: Long-Distance Agreement (Linzen, Dupoux & Goldberg 2021)

- Central claim of UG: language operates on (hierarchical) structure, not (linear) strings
 - ► → subject-verb agreement follows hierarchy, not a linear rule
 - ► The **length** of the *forewings* (is/*are)

Setup:

- train an LM on (simple, ambiguous) sentences
- test on (complex, disambiguating)
- scale # of distractors:
 The **key** to the cabinets by the doors

Results:

 Neural LMs do quite well on "common" structures, less well on "uncommon" ones

What does this mean?

- Do LMs "know" the same thing as people?
- Are LMs good models of human language acquisition?
- Why did this probabilistic approach succeed where the linguistically-informed, rule-based approach failed?

Are LMs good models of human language acquisition? (BabyLM)

- Humans learn from shockingly little data
 - → Chomsky's *Poverty of the Stimulus* argument
- ► LMs are *good*, but need *tons* of data:

Figure: ~7 orders of magnitude between humans and 'good' LLMs