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Abstract

To learn an unbounded problem is to generalize well from a limited set of training data.
In humans, robust language acquisition requires language learners to form strong gener-
alizations on the basis of very limited evidence (Chomsky 1980). These generalizations
seem to require the acquisition of functional abstractions of some sort. Various analysis
of these abstractions have been put forth in the context of replicating this generalization
in artificial settings (Fodor & Pylyshyn 1988, G. F. Marcus 1998a, Lake & Baroni 2018).
But what connects these descriptions of generalization, and how do they characterize the
difficulty of a particular linguistic phenomena in a way which informs our expectations
of whether it can be learned by an artificial neural network?

This thesis takes a broad approach to answering this question. First, we explore a
formalism to unite the various descriptions of linguistic generalization in a way which
establishes a complexity hierarchy for tasks requiring generalization. We then use this
typology to explore whether a given task is learnable by simple recurrent networks
lacking explicit inductive biases for such generalization. We present constructive evi-
dence that such simple models are in fact capable of learning stronger generalizations
than previously thought, raising important questions about the mechanisms by which
generalizations can be learned by neural network models of language.
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Chapter 1

Introduction

This thesis began as an attempt to replicate a negative result. Working with my advisor,
Professor Robert Frank, I attempted to reproduce a result described in an earlier joint
paper of his exploring the ability (or lack thereof) of recurrent language models to learn
a task known as anaphora resolution: when presented with an input like Alice sees herself,
modelswere taskedwith providing the correct interpretation of the reflexive anaphor her-
self in the context of the larger sentence (in this example, herself → alice). The failure of
small recurrent models to effectively capture this phenomena was supported empirically
by earlier work (cf. Frank, Mathis & Badecker 2013) and theoretically by doubts about
the capacity of such models to learn algebraic generalizations—generalizations which
involve abstracting over the identity of particular inputs to learn a general pattern—in
the absence of specific inductive biases to do so.

We were thus surprised when we found that simple recurrent models are able to
succeed at this task with perfect generality when used in a sequence-to-sequence context.
This unexpectedly successful result raised further questions: How are these models able
to succeed where others failed? By what mechanism can simple models learn these tasks?
To what degree can their performance be extended to more complicated domains which
more closely resemble natural language?

Although the experimental domain for this initial experiment is small and synthetic,
capturing only a small slice of the linguistic context provided by natural language to
human learners, the ability of models to succeed at this task is important. As machine
learning techniques become more advanced and the capabilities of neural models more
pronounced, it is becoming increasingly clear that structurally-sensible generalization
remains a stumbling block in the capacity of neural models to understand and interpret
natural language (Lake 2019). The effects of this are twofold: on the one hand, achieving
adequate (i.e., humanlike) performance on arbitrary input data requires the collation of
vast quantities of data and the expenditure of enormous quantities of energy in order to
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Chapter 1. Introduction 2

successfully train models (Dodge et al. 2021). This situation is undesirable for a number
of reasons. Current models require orders of magnitude more training data than human
language learners to achieve comparable levels of performance, which poses theoretical
concerns for the comparability of the two systems. More practically, acquiring thatmuch
data and expending that much energy ranges from devilishly tedious in the case of well-
documented languages to downright impossible for under-documented ones, posing
serious implementation challenges for research scientists and industry practitioners
(Walther & Sagot 2017, Bender et al. 2021). Furthermore, enormous training sets are
often difficult or impossible to thoroughly vet for bias and data poisoning, leavingmodels
vulnerable to unpredictably undesirable outcomes (Bender et al. 2021). On the other
hand, even in the cases where such quantities of data can be found and such energy
expended so as to produce well-performing models, the actual general performance of
such models is often frustratingly brittle in hard-to-interpret ways. Models are often
hypersensitive to small perturbations in input data and fail to generalize in domain-
sensible ways (see, for instance, Abdou et al. (2020)).

Efforts to remedy these problems often focus on studying the generalizable capacity
of models: that is, how they learn to make educated guesses on data which falls outside
their training domain. Models which learn to make sensible generalizations on the
basis of more limited support are better equipped to be used in academia and industry.
Defining what counts as a ‘sensible’ generalization and producing models which display
these characteristics is, of course, easier said than done. In linguistic domains, much
attention has been given to the ideas of compositional and structural generalization,
wherein knowledge of component pieces combines to produce knowledge of a larger,
unseen whole (Fodor & Pylyshyn 1988, Lake & Baroni 2018). Success at tasks involving
structural composition remains elusive in the best-performing models of language and
vision (Lake & Baroni 2018, Gordon et al. 2019).

This thesis charts a narrow path through this large open problem. We seek to relate
the various descriptions of generalization in a way which admits an analysis of what
problems in linguistic domains are learnable by what kinds of artificial neural network
models. To do this, we explore several problems requiring a degree of algebraic general-
ization, demonstrating empirically that simple recurrent networks lacking inductive
biases for algebraic generalization are more powerful than previously thought. We
then attempt to analyze these models to better understand how these networks acquire
knowledge of their training domains consistent with algebraic generalization to a larger
context.



Chapter 1. Introduction 3

1.1 Organization

The remainder of this thesis explores the capacity of linguistic neural networks to exhibit
algebraic generalization in various realms. Chapter 2 introduces algebraic generalization
as a formal property of learning and summarizes the previous work that has been done
to explore how neural models exhibit algebraic generalization in linguistic domains.
We adopt the analysis of Gordon et al. (2019) to provide a formal characterization of
generalization complexity as measured by the complexity of the structural and function
components associated with a particular task, and use this formalism to connect notions
of algebraic, lexical, structural, and compositional (linguistic) generalization under a
single formalism. We then pick out specific natural-language phenomena exhibiting
patterns of algebraic knowledge and explore if and how networks manage to acquire
this knowledge in in a way which generalizes. This empirical exploration is divided
into two parts: Part I focuses on exploring properties of algebraic generalization in
sequence-to-sequence models. Chapter 3 provides experimental evidence that even
simple recurrent networks without attention are able to display algebraic generalization
in domain-specific tasks, contradiction earlier assumptions about the generative capacity
of recurrent models. Chapter 4 extends this work to include more modern transformer
models and explores the degree to which these various architectures exhibit preferences
for linear generalization strategies which are at odds with the generalizations made
by children to account for patterns in natural language. Chapter 5 takes the results of
chapter 3 and attempts to analyze how the models surveyed therein are able to learn and
exhibit algebraically-generalized knowledge.

Part II Moves from a sequence-to-sequence context to a language modelling context.
In Chapter 6we explore the degree towhich large, general-purpose, pre-trained language
models have acquired a generalization for alignment between surface position and
thematic roles.

Chapter 7 concludes with an extended discussion of how the results of these studies
inform the work being done in adjacent sectors of cognitive science, machine learning,
and computational linguistics, and sketches the outlines of several promising avenues
for future research to further explore the topics presented here.

1.2 Reproducability and Code

The validity of any scientific insight is fundamentally predicated on the ability of oth-
ers to independently examine and reproduce its results. In many cases, well-meaning
authors and researchers must mange the competing interests of economy and complete-
ness when reporting their findings, a natural consequence of which is ambiguity in the
interpretation of data, results, and experimental methodology. Yet as this work is not
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bound by any firm page limit, nor need it conform to particular expectations for what
information about an experiment is privileged in explanation, I have made every effort
to provide clear and thorough accounts for how I arrived at my conclusions and how
future researchers may attempt to replicate these results should the interest arise.

Working in a computational domain provides solutions to many of these challenges,
but also introduces new problems for readers to contend with. Link rot and dependency
ambiguity are often obstacles which impede researchers in attempting to reproduce a
particular paper’s results. To address this challenge, I have included with every chapter
a post-script describing how to reproduce the discussed experiments using the code
and data which created the original results. By combining a dependency-pinned virtual
environment (conda) with a virtualization and containterization framework (docker),
it is possible to provide a platform-independent solution to the problem of training and
evaluating machine learning results. Each experiment herein described is thus explicable
and reproducible by any who wish to do so.

1.3 Acknowledgements and Previously Published Material

A massive debt of gratitude is owed to many people besides myself who facilitated the
work that is presented here. First and foremost, I must acknowledge that authorial credit
for many of the individual chapters is shared with Robert Frank and Michael Wilson
who have patiently worked with me for the past two years on exploring various topics
related to the intersection of machine learning and theoretical linguistics. This work
began in earnest during the summer of 2020 when I began working with Professor Fank
in the CLAY Lab. The result of that work was the publication of two papers which form
the core of Chapters 3 and 4. This work continued through the fall of 2021, where we
wrote with Michael Wilson the core of Chapter 6. In addition to being coauthors of
these publications, Bob and Michael have also been invaluable instructors as I’ve learned
to conduct research and present it in written and spoken form, and I certainly couldn’t
have accomplished any of the work that follows without their help and guidance.

A broader acknowledgement is needed too for the many members of the CLAY Lab
who have worked with me over the past several years and who have continued to provide
useful feedback and friendly camaraderie during my time at Yale. I owe particular thanks
in this regard to Noah Amsel, Shayna Sragovitcz, and Arohi Srivasatva.



Chapter 2

Formalizing Generalizing

“All generalization is hard. But some
generalizations are harder than others.”

— George Orwell, Animal Farm
(paraphrased)

To learn a pattern in data is to learn a function which associates particular input
data to particular outputs in a sensible manner. But why are some patterns harder to
learn than others? Enormous effort is expended by scientists and engineers to develop
models which are “better” than the previous iteration, where “better” means that the
model gives more accurate results in ever larger problem spaces. As one moves beyond
toy models and trivial datasets, it quickly becomes clear that fully training a model
on all its possible inputs is not feasible. On a practical level, many problem domains
are infinite: a model which knows a language to arbitrary levels of competence cannot
possibly train on all possible linguistic inputs or outputs because natural language is
not a finite domain. On a theoretical level, models which exhaust the set of possible
training data are fundamentally uninteresting, for the true value of models lies in their
predictive capacity, which of course necessitates that a model is not simply memorizing
seen mappings between its input and output domain.

What we desire, then, are models which generalize—make sensible educated guesses
on data which is qualitatively or quantitatively divergent from the training set. Creating
generalizable models for arbitrary problems is then a, if not the, centrally important
task to machine learning and computational scientists who wish to model observed
phenomena. In the past decade, computational scientists have witnessed an explosion
in the generative capacity of artificial neural models, which are now employed to solve
increasingly difficult tasks in an ever-widening field of problem domains. Yet despite
this renaissance of machine learning, some tasks remain frustratingly difficult to solve.
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This disparity is made all the more confusing when artificial models are compared
to human learners, who are often able to achieve better, or at least comparable, levels of
performance on a vast array of different problem tasks on the basis of far less training
than is provided to state-of-the-art models. This gap in performance and training raises
important questions for engineers and researchers who seek to improve the capacity
of their models: How are natural learners able to acquire generalizations on the basis
of such comparatively limited support? What makes some problems harder to solve
than others in a sufficiently general manner? How can we design models which better
emulate the patterns of learning we observe in human subjects?

2.1 What makes something difficult to learn?

Some forms of generalization amount to sensible treatment of unforeseen inputs. Imag-
ing a color classification model which is trained to classify input hues into discrete
categories. Given a robust but limited sample of possible inputs for each of the various
output categories ‘red,’ ‘blue,’ ‘green,’ ‘yellow,’ and ‘purple,’ a model with good generaliza-
tional capacity will be able to accurately classify inputs whose shade or hue is reasonably
perturbed from any of the training samples despite never having seen this novel input
before. This kind of generalization is fundamentally analyzable as a tolerance on input
data. On the basis of a limited set of input data, generalizable models can make sensible
inferences about new inputs which are ‘nearby’ in the learned encoding representation
of these inputs. We may think of the set of inputs in colorspace not shown to the model
during training as the withholding set, and so say that the model generalizes well to this
withholding set because it accurately classifies members of this set on the bases of its
knowledge of the training set to arbitrary accuracy—that is to say that given an arbitrary
level of desired accuracy, we can provide sufficient training support to teach a model to
approximate the ideal classification to within this desired accuracy.

Although many forms of generalizational capacity can be expressed in this way,
other forms of generalization seem to require more computational capacity than mere
tolerance. Consider a linguistic model which is tasked with copying a given but arbitrary
input. While certainly a trivial task when the input domain is finite, how can a model
learn to generalize this task to arbitrary known inputs? These kinds of problems seem
to require more computational machinery than simple generalizational tasks. Yet the
characterizations of different kinds of generalization tasks remains both vague, relying
heavily on intuition to provide a sense of problem difficulty; and domain-specific, provid-
ing more rigorous treatments of specific phenomena in particular domains, but failing
to make connections across domains or connect these characterizations to formalisms of
human cognition.

An early attempt to break through this problem came in G. F. Marcus (1998a)’s
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work in algebraic generalization. The key theoretical insight of G. F. Marcus (1998a)
and subsequent work, including G. F. Marcus (2001) and Berent & Marcus (2019), is to
observe that generalization requires one to learn an “operational abstraction” over a set of
data. Berent & Marcus (2019) define this notion in somewhat vague terms, but ultimately
argue that generalization requires a model to first, learn a partition of the input domain
into equivalence classes of data which share abstract properties; and second, learn a set
of functions which operates on the members of these equivalence classes in a uniform
manner.

This notion of uniform treatment captures a quality which seems fundamental to
human cognition, andwhich is certainly a central part of the human capacity for language.
Speakers naturally learn that lexical items pattern together on the basis of their positional
distribution, forming into cogent cognitive categories like noun, verb, article, and so
on. But more than simply a descriptive phenomenon, these categorical abstractions are
operational in the sense that knowing a word belongs to a particular syntactic category
is sufficient to let a speaker use that word in any context where members of that category
are valid. This inferential leap is what allows speakers of English to learn that Xandar
is a name and then have no trouble making sense of a complicated expression like that
found below in (1).

(1) “Which one of Xandar’s books did he tell you to borrow?”

Despite never having encountered the name Xandar in this context, knowledge that
Xandar is a name allows one to produce and interpret such a sentence without any
additional training data.

Despite this intuitive foundation, Berent &Marcus do not provide concrete examples
of how to formalize this notion of uniform treatment; offer any guidance on what
restrictions, if any, are placed on the kinds of equivalence classes which are requisite for
generalization to happen1; or make clear the connection between the equivalence classes
themselves and the functions which act on them. The status of algebraic generalization,
though promising, is thus in limbo awaiting a connection to the practical problems faced
by computational scientists and researchers attempting to build models which exhibit
such generalizational capacity.

One promising avenue towards formalizing the notion of algebraic generalization
and connecting it to the kinds of practical problems facing modelers lies with a different
treatment of generalization: compositional generalization. Compositional generaliza-
tion views generalization capacity as the capability of a model to learn knowledge of a

1For instance, we may consider examples at two extremes: one one hand, a task may require that each
input is ‘unique’ in that it forms an equivalence class with itself; conversely, a task may be described as
requiring the every input to map to a single equivalence class. While such trivial examples are perhaps
easily dismissed on a case-by-case basis, the larger question of what constitutes a valid equivalence class for
a problem requiring algebraic generalization still requires an answer.
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larger structure conditional on knowledge of smaller, modular components. Language
provides a natural sandbox for studying the compositional generalizational capacity of
models since it is fundamentally built on computational knowledge in which smaller
structures combine in predictable ways to produce arbitrarily complex constructions
Fodor & Pylyshyn (1988), Fitch, Hauser & Chomsky (2005). This property of natural
language has prompted a recent flurry of research towards creating datasets whichmodel
compositional generalization and testing whether artificial neural models are able to
learn compositionally general tasks (see, for instance, Lake & Baroni 2018, Lake 2019,
Kim & Linzen 2020, inter alia).

In a linguistic setting, compositional generalization is sometimes broken down into
lexical generalization, wherein a model learns to interpret, operate upon, and produce
novel words subject to learned distributional restrictions; and structural generalization,
where a model extends its knowledge of a structural object to larger and more com-
plicated inputs (for instance, generalizing from short sequences to long sequences, or
learning patterns of language which exhibit syntactic sensitivity and then testing in more
syntactically complex environments).

Outside of the domain of natural language, compositionality and the challenges of
achieving it surface in a wide variety of phenomena. Consider generative image models
like DALL·E, which have been trained to generate images based on written prompts.
Such models have proven remarkably adept at generating complex and detailed scenes.
Yet these models still show signs of brittleness when faced with tasks which require
composition. Consider as an example the collection of DALL·E mini images shown
below in Figure 2.1. Here, themodel displays excellent performance at generating images
which match component prompts like ‘a red ball,’ ‘a blue cube,’ and ‘a yellow pyramid,’
but this knowledge does not translate into success at composing these components into
a larger scene containing ‘a yellow pyramid on top of a blue cube, next to a red ball.’

While compositional generalization likewise provides a useful framework for think-
ing about how models can learn to generalize given knowledge into new constructions,
there remains work to be done in characterizing how compositional tasks are measured.
For example, while it is intuitively obvious to speakers of natural language that tasks on
the COGS dataset requiring structural generalization are harder than those involving
mere lexical generalization (Weißenhorn et al. 2022), what formal reason can be given
for why this is the case? What makes structural generalization a harder task than lexical
generalization? Where does the boundary between structural and lexical tasks lie? More
generally, what are the extra-domain analogues to lexical and structural generalization?
How do these concepts translate into the domain of multimodal language-vision models
like DALL·E? Finally, how does the structural knowledge outlined in theories of com-
positional knowledge relate to the kind of algebraic knowledge described by Berent &
Marcus (2019), which focused on identity relations as the key component to generalized
learning?
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Figure 2.1: Top Row: DALL·E mini shows excellent performance at generate scenes matching
individual component inputs (‘a red ball,’ ‘a blue cube,’ and ‘a yellow pyramid’). Bottom Row:
However, success at interpreting these inputs independently does not mean that it knows what
to do with them when they are composed in the input (‘a yellow pyramid on top of a blue cube,
next to a red ball’).

2.2 A Proposed Typology of Generalization

One large step taken towards reconciling these disparate understandings of generaliza-
tion comes fromGordon et al. (2019), who begin to formalize notions of compositionality
in relation to the scan task of Lake & Baroni (2018). Here, the authors attempt to charac-
terize the kind of compositional knowledgewhich plagues current sequence-to-sequence
models Lake & Baroni (2018), Gordon et al. (2019). Their main contribution is to show
that some forms of compositionality can be described as a form of group equivariance.
To recount their characterization, consider first the definition of an equivariant map.

(2) Equivariant function: Let S,Tbe sets, and let � be a group with left-action on
Sand T. A function 5 : S→ Tis equivariant if it composes over the action of the
group; that is, 5 (6 · F) = 6 · 5 (F) for all F ∈ S, 6 ∈ �.

Any 6 ∈ � acts as a permutation on the setsS,T. Equivariant functions are those which
respect those permutations. We can further refine this definition by considering cases
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when the group action on a sequence is equivalent to an individual permutation applied
to each term.

(3) a. Local action: A group � acts on a set S = ( × · · · × ( locally if for all 6 ∈ �

there exits some action 6( · such that 6 · (A1, · · · , A<) = (6( · A1, · · · 6( · A<).
b. Locally equivariant function: An equivariant function is locally equivariant

if its associated action is local.
That is, a local action is one in which permutation factors into the individual tokens of
the input domain. In the context of sequence-to-sequence tasks (Sutskever, Vinyals & Le
2014) where our input and output domains are sequences of text built from vocabularies,
local actions are those were each permutation of sequences is decomposable into a fixed
permutation on the indivual vocabulary words.

Gordon et al. (2019) propose that compositionality in linguistic tasks requires the
learning of equivariant functions. To see why, consider a small subset of Lake & Baroni
(2018)’s scan task, which requires a model to translate a series of input predicates into
commands for a robot, as shown below in (4).

(4) a. jump → jump
b. run → run
c. walk left → l_walk
d. jump twice → jump jump

Importantly, some predicates in the input domain, like twice, are special in that they tell
the robot to repeat whatever predicate precedes them. To learn to interpret all possible
scan commands, it is not enough to learn that jump twice→ jump jump, walk left twice→
l_walk l_walk, and run twice → run run. Rather, one must acquire the more general
rule that twice is a reduplication commandwhich doubles any predicate Fwhich precedes
it. A function 5 which accurately maps between the input and output domains then needs
to act uniformly on all possible twice-expecting predicates. Formally, we might say that if
Sis the scan input domain and D ⊂ Sis the set of predicates which can be reduplicated
by twice, then for any permutation 6 ofSwe require that 5 (6 · 3) = 6 · 5 (3) for all 3 ∈ D;
that is, if we permute jump to run, then 5 should likewise permute jump jump to run run.
This further stipulation shows that the subset of the scan task which includes predicates
like twice requires the learned functions to be locally equivariant, so as to preserve the
connection between permutations of entire sequences and permutations of the tokens
within each sequence.

Though Gordon et al. (2019) do not explicitly draw this connection, notice that this
notion of equivariance implicitly encodes a set of equivalence classes in the input and
output domains. These classes are defined exactly by the orbits of elements under action
by�:



Chapter 2. Formalizing Generalizing 11

(5) Induced equivalence classes: For all A, B ∈ S, A ∼ B if� · A = � · B.
These equivalence classes are the sets of elements in the input and output domains which
are permuted with one another.

This notion of group action inducing equivalence classes is important because it
precisely captures the notions presented in Berent & Marcus (2019) about operational
equivalence classes: learners who make (algebraic) generalizations learn to partition the
input domain into equivalence classes (i.e., learn the appropriate structure of a group �
such that the orbits of the inputs under action by� form the notionally correct classes)
and then learn uniform functions on those classes (i.e., learn an function on the input
domain which is equivariant with respect to�).

That the intuition expressed in Berent & Marcus (2019) is so cleanly described by
the formalism presented in Gordon et al. (2019) strongly suggests that the algebraic
generalization described by Berent & Marcus is captured in the subset of compositional
generalization tasks described by Gordon et al. (2019).

Figure 2.2: Proposed typology
of generalization forms

Taking a bird’s-eye view of the landscape of
generalization tasks, we turn to the first major
contribution of this work, which is to extend the
formalism of Gordon et al. (2019) into a typology
of forms of generalization which can characterize
the relative difficulty of different kinds of gener-
alization on the basis of their formal properties.
This proposed classification is shown beside in Fig-
ure 2.2. Each level on this hierarchy corresponds to
requirements of either the learned group represen-
tation for the symmetries present in the underly-
ing data of the phenomenon being modelled, or of
the learned functions which map from the equiv-
alence classes induced by these symmetries into
the output domain. As the levels increase, the re-
quirements on the group structure or the functions
acting on the induced equivalence classes become
stronger. Thus, a problem requiring distributional
generalization (�1 on this typology) requires learn-
ing a simpler set of functions than are required to
learn a problem equivalent to an identity general-

ization problem.
To be absolutely explicit about the properties which distinguish one kind of general-

ization from another, we will introduce the following commutative diagram.

�1 Simple or Distributional Generalization. This is the kind of generalization
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found in the hue-classification task proposed earlier, where a model generalizes
knowledge of a particular class to novel inputs on the basis of their distribution.
Formally, it requires a learner to:

(a) Learn a set of equivalence classes on the input space S by learning the
structure of the appropriate permutation group on the elements; and

(b) Learn a function 5 which is invariant on each equivalence class.

Invariance is a weakened form of equivariance, where we only require 5 to act
invariantly on all members of a particular equivalence class; that is, 5 (6 · 0) = 5 (0)
for all 0 ∈ U and all 6 ∈ �. These are functions which are constant over each
equivalence class. Such generalization naturally extends to classifiers, for whom
knowledge of an input’s equivalence class is sufficient to determine its output,
but some forms of lexical generalization in non-classifier contexts also fall into
this category. Consider, for instance, the work of Kim & Smolensky (2021) who
teach BERT (Devlin et al. 2019) to model a novel noun thax and verb dax in a
limited distributional context and then show that the model prefers to produce
the correct form in more complicated noun- and verb-accepting contexts.

Importantly, distributional generalization does not make use of the identity of
elements of the input domain once they are assigned to an equivalence class; this
information is collapsed and the learned mapping acts only on the identities of
the equivalence classes themselves.

�2 Identity Generalization requires a learner to not only learn an assignment
of inputs to equivalence classes but further requires that the learned mapping
on those classes preserves the identity of each element in the class. Formally, it
requires one to learn:

(a) A set of equivalence classes on S induced by learning the structure of the
permutation group�; and

(b) An function 6 which is equivariant with respect to � on each equivalence
class.

The identity of the elements of each equivalence class are preserved under 5
because each group action factors over 5 . This is the simplest formulation of
compositional generalization in Gordon et al. (2019), and corresponds directly to
the identity problem posed by G. F. Marcus (1998a), where a network is tasked
with learning to apply the ‘an x is an x’ predicate to a novel value of x; here, a
model must learn not only that a novel value of x is valid in this construction, but
must also carry over knowledge of x’s identity when given the prompt ‘an x is a ...’
and then asked to complete the expression with ‘x.’
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�3 Fixed-Point Generalization extends identity generalization to impose addi-
tional structure on the learned permutation group acting on the input domain.
Specifically, a problem requires fixed-point generalization if there exists a set of
inputs {A1, . . . , A9} which are fixed points of every action 6 ∈ �, where 6 · A7 = A7

for all 6 ∈ �.

The subset of the scan tasks which involves the reduplicative predicates twice,
thrice, and so on fall into this category. These predicates are fixed points under
action by� since they cannot be mapped to another predicate in the input domain
and still composewith the learned interpretation function. This further restriction
encompasses the anaphora resolution task posed by Frank, Mathis & Badecker
(2013) as a test of algebraic generalization, where a model must learn to interpret
a n expression containing a reflexive anaphora, like ‘John sees himself in the
mirror,’ for a contextually-novel antecedent John. Notably, the orbit of the reflexive
anaphor himself is trivial in the input domain, since himself cannot map to any
other valid object of sees while still generalizing in the output domain (since if
himself → Bill, for example, then all reflexive sentences will now have the object
Bill), as the permutation induced by the group structure must carry-through
equivariantly to the output domain.

I also tentatively propose a further class �4 which characterizes structural general-
ization. This class is not (yet) defined in as formal manner as the other generalization
classes, but it is clear from the failures of neural models to solve structural tasks in
generality (Lake & Baroni 2018) that they are qualitatively distinct from the lower kinds
of generalization. Theoretically, linguistic problems requiring what we might call “full
structural generalization” seem to require a more complicated relationship between
input tokens and learned equivalence classes: while the classes required to characterize
the identity problem put forth by G. F. Marcus (1998a) or the anaphora resolution task
of Frank, Mathis & Badecker (2013) are formed seemingly on the basis of individual
tokens in the input representation, knowledge of person agreement in arbitrary clauses
requires knowledge equivalent to the imposition of syntactic hierarchy and recognition
of a mechanism reminiscent of c-command; here, entire phrases (at least) and elements
of structural positions in a tree hierarchy form equivalence classes.

In their work on modeling compositional generalization as the learning of group-
equivariant functions, Gordon et al. (2019) similarly note that within the tasks broadly
considered to be ‘compositional generalization’ there are differences in the requirements
for the necessary group actions: some tasks require the learning of functions which are
not local. They additionally note that even models explicitly designed with inductive bi-
ases for local group-equivariant functions are incapable of exhibit length generalization,
where withheld data is qualitatively similar to the training domain but simply longer, as
measured by token length. These theoretical and empirical results suggest that further
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rungs on this typological ladder exist between the fixed-point generalization identified
as �3 and the full structural generalization identified as �4.

This typological classification of forms of generalization has the virtue of connecting
various notions of generalizational capacity and providing a shared formal characteriza-
tion of each. This lets us directly compare the representational complexity of different
generalization tasks to better understand what makes some generalization tasks harder
than others. Ultimately, this typology further serves as a predictive instrument, where
each generalization class represents a particular level of computational difficulty to
acquire the relevant generalization. Thus if a problem can be described using an ana-
lytical formalism presented here, we make the claim that the learnability of that task is
equivalent to the learnability of other members of that generalization class.

Orthogonal Difficulties in Generalization

The typological hierarchy of generalization proposed here classifies generalization prob-
lems on the basis of the complexity of their representation in terms of symmetries and
equivariant functions between the input and output domain respecting these symmetries.
But this measure of difficulty is, in some sense, incomplete, since it does not take into
account the measure of support that these patterns of symmetry and functional transfor-
mation have in the training data. In effect, this hierarchy ignores the size and scope of
the withholding set, which limits the interpretability of a proposed task’s classification
in terms of its learnability by a given network.

We can see plainly that this this other measure of difficulty is orthogonal to the one
captured in the hierarchy; a more difficult problem may be presented to a model with
broad training support, while a comparatively simple problem may be presented with
a relative paucity of training support. Chapter 3 tests this orthogonal axis of difficulty
explicitly by constructing an �3-difficult task (equivalent to the anaphora resolution task
of Frank, Mathis & Badecker (2013), but in a sequence-to-sequence context) and then
progressively decreasing the training support shown to the model for this generalization,
to the effect of degrading the performance of some models on the withheld data.

Of course, this general observation is nothing new: the relationship between training
data and model performance is central to our understanding of deep learning and
generalization. In a cognitive science context, child acquisition of language on the
basis of extremely limited support has long been presented as the classic ‘Poverty of the
Stimulus’ argument in favor of the presence of some ‘language acquisition device’ present
in the human capacity for language which facilitates the formulation of syntactically-
valid generalizations for how language works (Chomsky (1980), though see Pullum &
Scholz (2002) for critique of whether or not this argument holds in human language
acquisition).
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However, it is crucial to observe that this measure of difficulty is separate from
the inherent complexity of the task. We leave unexamined in the rest of this work the
daunting task of providing an explicit connection between the size of training support
and learnability of a given task by a model which task into consideration both the
model architecture (and hence any implicit biases present in the network design) and
the proposed classification of this task on the kind of hierarchy presented here.

2.3 Algebraic Generalization in Natural Language

To ground this discussion of formal generalization categories and their learnability by
neural models to phenomena relevant to theoretical linguistics, it is worth exploring
various observed patterns in natural language which, when translated into the formal-
ism of the hierarchy presented here, require degrees of algebraic generalization. The
presence of these phenomena within the scope of ‘natural language learnable by humans’
thus demonstrates the centrality of algebraic generalization to the questions of human
language acquisition and language learnability by artificial neural networks.

Reduplication: Many languages exhibit morphological reduplication, where words
or segments of words are productively repeated to modify the meaning of the original
word in a predictable way (Urbanczyk 2017). English makes use of a type of this pattern
known as contrastive reduplication which involves the reduplication of words or phrases
to achieve a contrastive meaning with the simple, unreduplicated form (Ghomeshi et al.
2004). Consider the following (marginally adapted) examples:

(6) a. I’m up, I’m just not UP-up.
b. Yeah, but is he a doctor or is he a DOCTOR-doctor?
c. I’m eating a tuna salad, not a SALAD-salad.
d. Oh, we’re not LIVING-TOGETHER living-together. [Ghomeshi et al. 2004]

In each case, a certain predicate is reduplicated with initial stress to achieve a con-
trast where the reduplicated form is understood to be an intensive or truer form of the
predicate than the simple, unreduplicated form. This pattern is robustly productive in
North-American English, and can apply to a wide class of predicates ranging from the
concrete nouns of (6b) to the verbal constructions of (6d). Since this reduplication is
productive, speakers of English cannot learn it merely on the basis that a SALAD-salad
is a purer form of salad, or that a DOCTOR-doctor is a truer form of doctor; rather,
they must acquire a more general understanding that given a predicate F with an asso-
ciated interpretation, an --F is a predictably-intensive or truer form of whatever F’s
interpretation is.

Root-Template Morphology: Semitic languages employ noncontatenative mor-
phology where tuples of consonontal roots are placed into morphological templates to
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productively derive words (Bat-El 2003). Consider the following examples from Hebrew,
wherein various triconsonontal roots are combined with two templates to produce
simple and passive verbal forms.

(7) �a�á� ni��á�
k­t­b katáv, ‘he read’ niḫtáv, ‘it was read’
l­b­ś laváś, ‘he wore’ nilbáś, ‘it was worn’
ʾ­k­l ʾaḫál, ‘he ate’ niʾkál, ‘it was eaten’

p­t­ḥ patáh,̣ ‘he opened’ niftáḥ, ‘it was opened’

Subject to some phonological modification of how each root consonant is pronounced
(in certain positions, stops may be realized as fricatives), each verb form represents a
kind of template into which the root consonants may be substituted to form a verb. A
speaker who has acquired Hebrew well enough to internalize this pattern of production
need not re-learn these output forms for when learning new roots, as knowledge of the
realized forms can be abstracted into knowledge of the template pattern.2

Reflexive Anaphora Interpretation: Natural languages frequently employ reflex-
ive anaphors to represent reflexive meaning in otherwise non-reflexive constructions.
In learning to interpret sentences which contain such reflexive anaphora like himself
and herself, learners may be exposed to various inputs like those in (8) below.

(8) a. “Alice sees herself”→ see(alice, alice)
b. “Claire sees herself”→ see(claire, claire)

For a limited number of possible antecedents, learners could come to the conclusion that
herself has a number of possible interpretations based on the context of the surrounding
sentence: that is, herself means alice in the context of Alice and claire in the context
of Claire. However, this pattern is not general enough to extend to new names; rather,
speakers acquire themore general rule that herself takes on the interpretation ofwhatever
antecedent occupies the nearest position c-commanding it in the binding domain. This
pattern cannot be learned as a mere extension of particular form-context pairings, but
must rather be learned as an algebraically general rule.

The bulk of the remainder of this thesis will explore models which attempt to learn
exactly this problem: interpreting reflexive anaphora in the context of antecedents which
have not previously been seen in a reflexive context.

2Of course, native speakers of Hebrew must also contend with the fact that these verbal templates
are not completely productive. Some roots do not have simple paʿal forms, while others do not have the
passive nifʿal forms, and so learners are likely to overgeneralize this root-template knowledge to produce
ungrammatical constructions.
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2.4 Algebraic Generalization in Neural Models

Given the importance of algebraic generalization in models of cognition and its demon-
strated prevalence in natural language, it is not surprising that computational models of
cognitive processes like language which display algebraic generalization would prove
useful, both practically and theoretically (G. F. Marcus 2001). Despite this desire, initial
work examining artificial neural models’ ability to solve algebraically general tasks has
been treated with skepticism. Early treatment of this dilemma comes in the work of
G. F. Marcus, who argues that the kinds of artificial neural networks commonly used
(here, taken to be the recurrent model proposed by Elman (1990)) are fundamentally
incapable of learning to solve algebraically general problems (G. F. Marcus 1998a,b).
This prediction derives from the argument that models trained via backpropogation are
incapable of learning abstracted relationships to features of data which do not appear
in the training set. This fact, according to G. F. Marcus, follows from the mathematical
properties of the general backpropogation algorithm, whereinweight updates are strictly
local based only on the signal available to a particular connection between neurons rather
than any global information.

In this view, neural models are then fundamentally incapable of solving generaliza-
tion tasks which require abstraction over an input set because the learned properties of
the training inputs will never apply to novel inputs with a different distribution in the
testing data. Such abstraction is required to allow for the variable scoping of (9), where a
model learns to approximate a function 5 on the basis of limited support and then apply
this knowledge to a full set of inputs.

(9) ∀F.5 (F) where 5 is some learned function

This kind of variable application is directly required for algebraic knowledge, as previ-
ously defined, since algebraic functions must implicitly apply equivariantly over equiva-
lence classes learned on the basis of incomplete support. Hence, G. F. Marcus argues,
existing neural models are incapable of algebraic generalization.

To make concrete this abstract claim about the limitations imposed via backprop-
agation, G. F. Marcus (1998a) offers the following experimental paradigm designed to
test a neural model’s ability to learn the identity function in full generality.3 A recurrent

3Actually, G. F. Marcus (1998a) describes two paradigms; the first involves training models only
on sentences of the form shown in (11b), and then testing the model on a wholly-novel token lilac ∉

{rose, tulip, lily}. This experiment is bound to fail simply on the premise that the recurrent networks
surveyed require a fixed embedding width to function, and so are incapable of generalizing to a novel token
merely because there is no analogy to ‘learning a word on the fly.’ Even relaxing this experiment to permit a
model knowledge that such a token exists but providing it no signal whatsoever about its distribution in
training data (akin to leaving the random initialization of lilac’s embedding unchanged over the course of
training), or providing a default <UNK> unknown token to which all novel tokens are mapped is destined to
fail because the model has been provided with no distributional knowledge of lilac whatsoever. This formal
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language model is presented with training data of the forms shown in (11) below,

(11) a. The bee lands on the F.
b. A G is a G.

where F ∈ {lilac, rose, tulip, lily} and G ∈ {rose, tulip, lily}. The model is then tested on
an input of the form shown below in (12), where lilac appears in a distributional context
not seen during training.

(12) A lilac is a ...

For natural language learners, the appearance of lilac in the training frame defined
by (11a) is enough to signal that lilac is a valid member of a noun class, and can therefore
can have the same distribution as any member of G. Felicitously completing the prompt
of (12) as ‘A lilac is a lilac’ is therefore trivial. Yet for the neural models surveyed by G. F.
Marcus (1998a), success proved elusive. Networks were unable to learn the abstraction
necessary to include lilac in an equivalence class with other members of G, and hence
were unable to learn an equivariant, algebraic function to produce the output token lilac
conditional on the ‘identity prompt’ input of ‘A lilac is a ...’

This ‘identity’ problem typifies the kind of task which requires algebraic general-
ization. It is a strictly harder task than learning to merely accept the sequence ‘A lilac
is a lilac’ as valid since the model must draw an explicit connection between the novel
prompt ‘A lilac is a ...’ and a contextually-novel output ‘lilac’. To learn a generalized
acceptance function on such prompts, it suffices for a model to merely learn to associate
contextually novel inputs with known inputs as members of a single equivalence class,
and then learn a binary function on compositions of input tokens involving members of
this equivalence class. This weaker challenge is exactly the task of lexical generalization,
which has been robustly shown to be within the capabilities of neural models (see, e.g.,
Kim & Smolensky 2021 for a recent example). Rather, to learn an identity mapping,
a model must manage to further learn an equivariant map on this equivalence class,
preserving the identity of the relevant token in the novel prompt to produce not just a
valid response, but the valid response.

Though the domain is trivial, and hence unrepresentative of the kind of problem
domain or training support presented to human language learners, the simplicity of

problem is perhaps analogous to the fact that while humans have no trouble understanding a sentence
like (11b) for novel words, we do require these words to be known to us as nouns; competent speakers of
English would likewise be puzzled by a prompt like (10) below, even though the ‘novel’ predicate without is
infact know to us!

(10) A without is a ...

From here on, we limit our discussion of the identity problem to the more relaxed one described in (11),
since this success or failure in this paradigm is more illustrative of an interpretable success or failure to
acquire generalization.
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the task perhaps strengthens G. F. Marcus (1998a)’s argument: the resolute failure of
recurrent language models to solve this task shed doubt on their ability to acquire
algebraically general knowledge and supported Berent & Marcus’s theoretical argument
that neural networks did not have the computational capacity to solve such problems to
full generality.

Although this thesis will ultimately take a stance in opposition to Berent & Marcus’s
results and argue empirically and analytically that such capacity is not beyond reach of
simple recurrent models, it is worth taking a moment to attempt to reconcile Berent
& Marcus’s views with the overwhelming success of contemporary neural networks at
solving increasingly difficult problems across a wide variety of domains. One may be
tempted to cite the incredible capacity of modern4 generative models such as GPT-3
(Brown et al. 2020) as clear evidence that the claims made in G. F. Marcus (1998a) are
incorrect. While the conclusion is, in my view, true, the argument5 itself is not sound.
The claim made by Berent & Marcus is one about neural models acting, in essence, as
perfectly general machines with an arbitrary capacity for the kind of generalization
demanded by the identity problem. It is not enough for such models to solve the identity
problem for any arbitrarily large set of predicates on the basis of massive training
support; they must be able to learn identity as applied to any valid predicate. This is
no small task, as evidenced by the failure of our best-performing general models to
solve problems requiring exactly this kind of abstraction. As a concrete counterfactual,
consider the plight of language models tasked with performing arithmetic, a set of
operations which makes foundational use of the notion of equality. The largest GPT-3
model, with 175 billion trainable parameters, shows categorical disparities in accuracy
between two-digit and three-digit arithmetic inputs (see section 3.9.1 of Brown et al.
2020). While the middling performance of such an otherwise large and capable model
on three-digit arithmetic is disappointing in the context of creating well-performing
models, the disparate outcomes between two- and three-digit arithmetic prompts belies
a much larger issue: the model has clearly not learned an abstract notion of ‘equality’
in an algebraically general way; rather, it has used massive training support to fit a
devilishly large problem space. When the size of the problem space outpaces the training
support, the models accuracy suffers greatly. This behavior stands in stark contrast to a
hypothetical model which has acquired an algebraic knowledge of an identity/equality
relation between inputs; such a model does not need arbitrarily large training support

4Alas, such a description is already made anachronous by the mere passage of time. What was ‘modern’
at the time of writing is surely archaic at the time of reading.

5I do not make any specific claim or citation for who may make such an argument; rather, I wish to
present it along with a rebuttal simply because I find it to be a natural claim to make at first glance. One can
be forgiven for seeing the amazing capacity of neural networks in stark comparison to the unassuming
problem domain set forth by G. F. Marcus (1998a) and concluding that the latter’s arguments must surely
be refuted.
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to solve arithmetic relations of arbitrary length.
Berent & Marcus’s skepticism may then stand a moment longer in the face of current

machine learning achievements, though the following sections will show that it may not
do so indefinitely.

Inductive Biases for Algebraic Knowledge

The critique offered in G. F. Marcus (1998a) and subsequent work has been focused on
‘purely neural’ models, a class of model ranging from simple recurrent neural networks
surveyed here to the massively large and capable transformer models which dominate
the playing field today. In distinction to such models, which provide no explicit way to
model the kind of symbolic relationships which he sees as necessary to achieve algebraic
generalization, G. Marcus (2020) offers symbolic and hybrid neural-symbolic models as
a better candidate for modelling problems which require algebraic knowledge. These
models make use of explicit symbol-manipulation computational machinery to sidestep
the limitations of pure neural models, and have been shown to be successful at the kinds
of tasks which haunt traditional neural networks (Smolensky et al. 2016, Schlag et al.
2020).

Such designs are representative of the larger approach of building inductive biases
into models which aid models at solving a general task by providing a model with a set of
a priori assumptions about how the taskmay be solved. Inductive biases are often realized
as explicit computational machinery present in a neural model to facilitate the learning
of an otherwise-difficult task. Though symbolic machinery is perhaps a natural tool to
reach for when faced with the prospect of learning algebraically-general rules, it is by no
means the only such inductive bias which is used to improve the performance of neural
models. One of the most prevalent inductive biases used today is attention, mechanisms
which provide a model selective focus over a particular part of the input conditioned
on the current output position (Schmidhuber & Huber 1990). This innovation has been
adapted to linguistic domains with great success; attention mechanisms have been used
widely in many of the most successful linguistic neural networks to date (Bahdanau,
Cho & Bengio 2016, Vaswani et al. 2017). Beyond providing general computational
capabilities, it is not hard to see how the ability to attend to specific positions in an input
sequence when producing an output sequence is of great use to solving the identity
problem posed in G. F. Marcus (1998a). Indeed, recent work has demonstrated that
attention mechanisms provide an inductive bias for learning equivariant functions over
permutations, and thus provide a clear path towards solving at least part of the challenge
posed by algebraically-sensitive tasks (Goyal & Bengio 2021).

While the use of architectural design as an inductive biases towards solving the
problem of acquiring algebraic knowledge may ultimately be fruitful, I am additionally
interested in exploring if and how models lacking this explicit machinery manage to
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nevertheless solve problems requiring algebraic generalization. As will be shown chap-
ter 3, we manage to train simple recurrent networks to solve a problem analogous to
the identity task of G. F. Marcus (1998a). That models lacking any inductive bias for
algebraic generalization are capable of solving this task demands elucidation, especially
in light of Berent & Marcus’s firm view that purely neural models lacking explicit biases
are incapable of such feats.

2.5 Anaphora Resolution as a Test of Algebraic Knowledge

As mentioned in Section 2.3, the interpretation of reflexive anaphora is a phenomenon
in natural language which requires algebraic generalization. Speakers understand that
reflexive pronouns like himself and herself take on the meaning of that of the local c-
commanding antecedent (Safir 2013). Learners come to this understanding on the basis of
limited training support: children manage to learn to interpret reflexive pronouns early,
even in the absence of strong attestation of these forms in a wide variety of contexts
(Clackson, Felser & Clahsen 2011, O’Grady 2013). Indeed, the problem domain for
reflexive anaphora is unbounded since names form an open syntactic class of nominal
antecedents for such forms, meaning that even robust attestation of reflexive sentences
with clear interpretations does not alleviate the problem that learning to interpret
reflexive pronouns in full generality requires the acquisition of an algebraic rule which
can abstract over the class of possible antecedents while preserving the identity of the
particular name which binds the anaphor.

Formally, a reflexive anaphor’s interpretation is governed by a c-command relation
with its antecedent:

(13) Reflexive Anaphora Resolution: A reflexive anaphor is interpreted as identical
to the nearest c-commanding noun phrase.

Thus in (14) below we see how the interpretation of the reflexive anaphor herself is
determined by the identity of the c-commanding noun phrase.

(14) a. Mary sees herself: J herself K = mary
b. Mary’s mother sees herself: J herself K = mother­of­mary

Since the resolution of reflexive anaphora is a task which both requires algebraic
generalization and is learned by children in the face of limited support in child-directed
speech (O’Grady 2013), it serves as a natural subject of inquiry in the computational mod-
elling of language learning. By virtue of its generalized difficulty, anaphora resolution
serves as a benchmark to test a neural model’s ability to acquire the algebraic knowledge
necessary for human-like performance on linguistic tasks. By virtue of its relatively
uncommon support in child-directed speech, the task also serves as a good point of
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comparison between the capability of human language learners to acquire linguistic
capacity and that of artificial neural models.

There are a number of wayswhich this task can be used tomeasure the generalization
capacity of neural models depending on the context in which data is presented. The first
is in a language modelling context, where a model is tasked with learning the conditional
probability of words in an output distribution based on the surrounding words present
in the input (Sutskever, Martens & Hinton 2011). Language models are used to produce
time-dependent predictions based on a given input sequence: given an enumeration
of an input sequence, as shown below in (15), a model produces a prediction for each
step in the sequence. In this context, a model may be trained to produce an output
interpretation for each input token at that token’s respective time-step.

(15)
alice sees alice
↑ ↑ ↑

Alice sees herself
B0 B1 B2

For reflexive anaphora resolution, language model which successfully learns this task
will learn to assign each word in the input with its semantic output. For nouns and verbs,
this task is trivial, as it involves merely learning to associate particular input tokens with
their corresponding output tokens. Thus, Alice→ alice, Mary→mary, sees→ sees, and
so on. For reflexive anaphora, however, the task is more difficult. Given a context of a
sentence beginning with Alice ..., the model must learn to associate herself → alice, while
learning to associate herself → mary in the context of Mary, and so on for each name
which can appear as an antecedent to the reflexive pronoun. For a model to generalize
to arbitrary antecedents, it is not enough to learn particular context-form mappings:
rather, a language model must be able to extract from an arbitrary conditional context
the identity of the relevant antecedent in a single time-step. Generalization can then be
tested by withholding a subset of possible names in a reflexive context during training,
and then testing the model on reflexive sentences involving these names. Models which
can successfully resolve reflexive anaphors to withheld antecedents have acquired the
algebraically-generalized rule for resolution.

This is the experimental setup of Frank, Mathis & Badecker (2013), which seeks to
explore the challenge posed byG. F.Marcus (1998a) in a linguistically-interesting context.
Here, reflexive sentences with the antecedent John were withheld from the training
support of a simple recurrent language model tasked with providing interpretations
to inputs. Although such models face little difficulty at learn to interpret in-domain
inputs, Frank, Mathis & Badecker find that they fail categorically when given sentences
like John sees himself from outside the training domain. This uniform failure mirrors
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the findings of G. F. Marcus (1998a)’s lilac-identity experiment and provides further
experimental evidence in support of the claim that simple recurrent models are unable
to learn algebraically general rules.

Interestingly, though all networks surveyed resoundingly failed to generalize, Frank,
Mathis & Badecker (2013) do make an important observation about the latent represen-
tations of the models’ penultimate layer of hidden units: while unable to generate the
correct probability distribution over the set of possible output tokens, the models did
manage to learn to represent the input vectors in such a way as to render the correct
output’s representation as linearly separable from the incorrect outputs’ representations
in all cases (that is, for each input context of x verbs self, the vector corresponding to the
correct interpretation is linearly separable from all others for every antecedent, includ-
ing those withheld during training). This suggests that the model has learned something
about the task in a general way, although it is unable to capitalize on this knowledge to
solve the full task in generality.

A second way to test for algebraic generalizational capacity via an anaphora res-
olution task comes in a sequence-to-sequence paradigm. Unlike language modelling,
where a model produces a single output for each input in an ordered fashion, a sequence-
to-sequence task separates computations on the input and output sequences from one
another (Sutskever, Vinyals & Le 2014). By removing the time-step and length depen-
dence of the output on the input, a sequence-to-sequence model is able to map arbitrary
input sequences to arbitrary output sequences via a compressed representation of the
input. These models are bicameral: the first part of the model, known as the encoder,
processes an input sequence and produces a hidden-vector representation of the input.
This input is then passed to the decoder, which uses this representation to produce a
series of output tokens until it generates a [STOP] token.

Treated as a sequence-to-sequence task, reflexive anaphora resolution is then seen
as a mapping between reflexive input sentences and formal representations of their
interpretation, as shown below in (16).

(16) Mary sees herself→ see(mary,mary)
Here, a model fully encodes the input Mary sees herself and is tasked with decoding
the representation of this sequence into the ordered sequence of output tokens ‘see’,
‘(’, ‘mary’, ‘,’, ‘mary’, ‘)’. Just as in the language-modelling paradigm, this sequence-to-
sequence task can be structured to test not only whether a model can learn this task
to arbitrary accuracy but also whether it can learn to generalize it’s knowledge of this
context-form-token mapping to novel reflexive antecedents. By withholding some
subset of possible antecedents in a reflexive context from a model and then testing a
model on these inputs we can determine whether or not a model is able to learn the
resolution rule in generality. This is the experiment of the first empirical result of this
thesis, Chapter 3, which tests sequence-to-sequence models by withholding all sentences
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involving Alice as the antecedent of a reflexive anaphor.
As will be elaborated upon further in the coming sections, treating the anaphora

resolution task as a sequence-to-sequence problem produces markedly different results
from those of the language-modelling problem. In a sequence-to-sequence context, even
simple recurrent networks are able to learn an algebraically-generalized pattern to arbi-
trary accuracy, exhibiting perfect generalization with the withheld set of Alice-reflexive
pronouns. The success of such simple models at solving a task requiring algebraic
generalization is thus notably for two main reasons: First, it provides a constructive
counterexample to G. F. Marcus (1998a)’s view that such algebraic knowledge is beyond
the generalizational capacity of pure neural networks without algebraic inductive biases;
second, it raises a number of important questions about how these models are able
to solve this task: By what mechanism are inattentive recurrent models able to learn
algebraically-general rules? What benefit does the sequence-to-sequence paradigm con-
fer over a language modelling paradigm? Where in the model does anaphora resolution
actually take place? Can we provide a formal interpretation for how such models make
use of their encoding space to represent inputs? The remaining chapters of Part I will
explore these questions in more detail.
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Chapter 3

Recurrent Resolution of Reflexive
Referents

3.1 Abstract:

Reflexive anaphora present a challenge for semantic interpretation: their meaning varies
depending on context in a way that appears to require abstract variables. Past work
has raised doubts about the ability of recurrent networks to meet this challenge. In
this paper, we explore this question in the context of a fragment of English that incor-
porates the relevant sort of contextual variability. We consider sequence-to-sequence
architectures with recurrent units and show that such networks are capable of learning
semantic interpretations for reflexive anaphora which generalize to novel antecedents.
We explore the effect of attention mechanisms and different recurrent unit types on the
type of training data that is needed for success as measured in two ways: how much
lexical support is needed to induce an abstract reflexive meaning (i.e., how many distinct
reflexive antecedents must occur during training) and what contexts must a noun phrase
occur in to support generalization of reflexive interpretation to this noun phrase?

Recurrent neural network architectures have demonstrated remarkable success in
natural language processing, achieving state of the art performance across an impres-
sive range of tasks ranging from machine translation to semantic parsing to question
answering (Sutskever, Vinyals & Le 2014, Cho et al. 2014, Bahdanau, Cho & Bengio
2016). These tasks demand the use of a wide variety of computational processes and
information sources (from grammatical to lexical to world knowledge), and are evaluated
in coarse-grained quantitative ways. As a result, it is not an easy matter to identify the
specific strengths and weaknesses in a network’s solution of a task.

In this paper, we take a different tack, exploring the degree to which neural networks
successfully master one very specific aspect of linguistic knowledge: the interpretation

26
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of sentences containing reflexive anaphora. We address this problem in the context of
the task of semantic parsing, which we instantiate as mapping a sequence of words into
a predicate calculus logical form representation of the sentence’s meaning.

(17) a. Mary runs→ run(mary)
b. John sees Bob→ see(john, bob)

Even for simple sentences like those in (17), which represent the smallest representations
of object reflexives in English, the network must learn lexical semantic correspondences
(e.g., the input symbol Mary is mapped to the output mary and runs is mapped to run)
and a mode of composition (e.g., for an intransitive sentence, the meaning of the subject
is surrounded by parentheses and appended to the meaning of the verb). Of course, not
all of natural language adheres to such simple formulas. Reflexives, words like herself
and himself, do not have an interpretation that can be assigned independently of the
meaning of the surrounding context.

(18) a. Mary sees herself→ see(mary,mary)
b. Alice sees herself→ see(alice, alice)

In these sentences, the interpretation of the reflexive is not a constant that can be com-
bined with the meaning of the surrounding elements. Rather, a reflexive object must
be interpreted as identical to the meaning of verb’s subject. Of course, a network could
learn a context-sensitive interpretation of a reflexive, so that for any sentence with
Mary as its subject, the reflexive is interpreted as mary, and with Alice as its subject it is
interpreted as alice. However, such piecemeal learning of reflexive meaning will not
support generalization to sentences involving a subject that has not been encountered as
the antecedent of a reflexive during training, even if the interpretation of the subject has
occurred elsewhere. What is needed instead is an interpretation of the reflexive that is
characterized not as a specific (sequence of) output token(s), but rather as an abstract
instruction to duplicate the interpretation of the subject. Such an abstraction requires
more than the “jigsaw puzzle” approach to meaning that simpler sentences afford.

G. F. Marcus (1998a) argues that this kind of abstraction, which he takes to require
the use of algebraic variables to assert identity, is beyond the capacity of recurrent neural
networks. G. F. Marcus’s demonstration involves a simple recurrent network (SRN,
Elman 1990) language model that is trained to predict the next word over a corpus of
sentences of the following form:

(19) a. A rose is a rose.
b. A mountain is a mountain.

All sentences in this training set have identical subject and object nouns. G. F. Marcus
shows, however, that the resulting trained network does not correctly predict the subject
noun when tested with a novel preamble ‘A book is a . . .’. Though intriguing, this demon-
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stration is not entirely convincing: since the noun occurring in the novel preamble, book
in our example, did not occur in the training data, there is no way that the network
could possibly have known which (one-hot represented) output should correspond to
the reflexive for a sentence containing the novel (one-hot represented) subject noun,
even if the network did successfully encode an identity relation between subject and
object.

Frank, Mathis & Badecker (2013) explore a related task in the context of SRN inter-
pretation of reflexives. In their experiments, SRNs were trained to map input words to
corresponding semantic symbols that are output on the same time step in which a word
is presented. For most words in the vocabulary, this is a simple task: the desired output
is a constant function of the input (Mary corresponds to mary, sees to see, etc.). For
reflexives however, the target output depends on the subject that occurs earlier in the
sentence. Frank, Mathis & Badecker tested the network’s ability to interpret a reflexive
in sentences containing a subject that had not occurred as a reflexive’s antecedent during
training. However, unlike Marcus’ task, this subject and its corresponding semantic
symbol did occur in other (non-reflexive) contexts in the training data, and therefore
was in the realm of possible inputs and outputs for the network. Nonetheless, none of
the SRNs that they trained succeeded at this task for even a single test example.

Since those experiments were conducted, substantial advances have been made on
recurrent neural network architectures, some of which have been crucial in the success
of practical NLP systems.

• Recurrent units: More sophisticated recurrent units like LSTMs (Graves &
Schmidhuber 2005) and GRUs (Cho et al. 2014) have been shown to better encode
preceding context than SRNs.

• Sequence-to-Sequence architectures: The performance of network models
that transduce one string to another, used in machine translation and semantic
parsing, has been greatly improved by the use of independent encoder and decoder
networks (Sutskever, Vinyals & Le 2014).

• Attention mechanism: The ability of a network to produce contextually appro-
priate outputs even in the context of novel vocabulary items has been facilitated by
content-sensitive attention mechanisms (Bahdanau, Cho & Bengio 2016, Luong,
Pham & Manning 2015).

These innovations open up the possibility that modern network architectures may well
be able to solve the variable identity problem necessary for mapping reflexive sentences
to their logical form. In the experiments we describe below, we explore whether this is
the case.
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3.2 Experimental Setup

Our experiments take the form of a semantic parsing task, where sequences of words
are mapped into logical form representations of meaning. Following Dong & Lapata
(2016), we do this by means of a sequence-to-sequence architecture Sutskever, Vinyals &
Le 2014 in which the input sentence is fully processed by an encoder network before it
is decoded into a sequence of symbols in the target domain (cf. Botvinick & Plaut 2006,
Frank & Mathis 2007 for antecedents). This approach removes the need to synchronize
the production of output symbols with the input words, as in Frank, Mathis & Badecker
(2013), allowing greater flexibility in the nature of semantic representations.

The sequence-to-sequence architecture is agnostic as to the types of recurrent units
for the encoding and decoding phases of the computation, and whether the decoder
makes use of an attention mechanism. Here, we explore the effects of using different
types of recurrent units and including attention or not. Specifically, we examine the
performance and training characteristics of sequence-to-sequence models based on
SRNs, GRUs, and LSTMs with and without multiplicative attention (Luong, Pham &
Manning 2015).

In all experiments, we perform 5 runs with different random seeds for each combina-
tion of recurrent unit type (one layer of SRN, LSTM or GRU units for both the encoder
and decoder) and attention (with or without multiplicative attention). All models used
hidden and embedding of size of 256. Training was done using Stochastic Gradient
Descent with learning rate of 0.01. Models were trained for a maximum of 100 epochs
with early stopping when validation loss fails to decrease by 0.005 over three successive
epochs.

We conduct all of our experiments with synthetic datasets from a small fragment
of English sentences generated using a simple context-free grammar. This fragment
includes simple sentences with transitive and intransitive verbs. Subjects are always
proper names and objects are either proper names or a reflexive whose gender matches
that of the subject. Our vocabulary includes 8 intransitive verbs, 7 transitive verbs, 15
female names, and 11 male names. The grammar thus generates 5,122 distinct sentences.
All sentences are generated with equal probability, subject to the restrictions imposed
by each experiment. We use a unification extension to CFG to associate each sentence
with a predicate calculus interpretation. The symbols corresponding to the predicates
and the entities in our logical language are identical with the verbs and names used by
our grammar, yielding representations like those shown in (17) and (18). The output
sequences corresponding to the target semantic interpretations include parentheses and
commas as separate symbols. Quite clearly, this dataset does not reproduce the richness
of English sentence structure or the distribution of reflexive anaphora, and we leave the
exploration of syntactically richer domains for future work. However, even this simple
fragment instantiate the kind of contextual variable interpretation found in all cases of
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reflexive interpretation and therefore it allows us to probe the ability of networks to
induce a representation of such meanings.

As discussed in the previous section, we are interested in whether sequence-to-
sequence models can successfully generalize their knowledge of the interpretation of
sentences containing reflexives to ones having novel antecedents. To do this, we employ
a poverty of the stimulus paradigm that tests for systematic generalization beyond a finite
(and ambiguous) set of training data Chomsky 1980. In our experiments, we remove
certain classes of examples from the training data set and test the effect on the network’s
success in interpreting reflexive-containing sentences. Each of our experiments thus
defines a set of sentences that are withheld during training. The non-withheld sentences
are randomly split 80%–10%–10% between training, validation, and testing sets. Accu-
racy for each set is computed on a sentence-level basis, i.e., an accurate output requires
that all symbols generated by the model be identical to the target. Our experiments focus
on two sorts of manipulations of the training data: (1) varying the number of lexical
items that do and do not occur as the antecedents of reflexives in the training set, and (2)
varying the syntactic positions in which the non-antecedent names occur. As we will see,
both of these manipulations substantially impact the success of reflexive generalization
in ways that vary across network types.

3.3 Experiment 1: Can Alice know herself?

In the first experiment, we directly test whether or not networks can generalize knowl-
edge of how to interpret herself to a new antecedent. We withhold all examples whose
input sequence includes the reflexive herself bound by the single antecedent Alice, of the
form shown in (20).

(20) Alice verbs herself→ verb(alice, alice)
Sentences of any other form are included in the training-validation-test splits, including
those where Alice appears without binding a reflexive.

Results

All network architectures were successful in this task, generalizing the interpretation of
herself to the novel antecedent Alice. Even the simplest networks, namely SRN models
without attention, achieve 100% accuracy on the generalization set (sentences of the form
shown in (20)). This is in sharp contrast the negative results obtained by Frank, Mathis
& Badecker (2013), suggesting an advantage for training with a language with more
names as well as for instantiating the semantic parsing task in a sequence-to-sequence
architecture as opposed to a language model.
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3.4 Experiment 2: Doesn’t Alice know Alice?

While the networks in Experiment 1 are not trained on sentences of the form shown
in (20), they are trained on sentences that have the same target semantic form, namely
sentences in which Alice occur as both subject and object of a transitive verb.

(21) Alice verbs Alice→ verb(alice, alice)
InExperiment 2we considerwhether the presence of such semantically reflexive forms in
the training data is helpful to networks in generalizing to syntactically reflexive sentences.
We do this by further excluding sentences of the form in (21) from the training data.

Results

All architectures except SRNs without attention generalize perfectly to the held out
items. Inattentive SRNs also generalize quite well, though only at a mean accuracy of
86%. While success at Experiment 1 demonstrates the networks’ abilities to generalize
to novel input contexts, success at Experiment 2 highlights how models can likewise
generalize to produce entirely new outputs.

3.5 Experiment 3: Who’s Alice and who’s Claire?

So far, we have considered generalization of reflexive interpretation to a single newname.
One possible explanation of the networks’ success is that they are simply defaulting to the
(held-out) alice interpretation when confronted with a new antecedent, as an elsewhere
interpretation (but see Gandhi & Lake (2020) for reasons for skepticism). Alternatively,
even if the network has acquired a generalized interpretation for reflexives, it may be
possible that this happens only when the training data includes overwhelming lexical
support (in Experiments 1 and 2, 25 out of the 26 names in our domain appeared in
the training data as the antecedent of a reflexive). To explore the contexts under which
networks can truly generalize to a range of new antecedents, we construct training
datasets in which we progressively withhold more and more names in sentences of the
forms shown in (22), i.e., those that were removed in Experiment 2.1

(22) a. P verbs herself→ verb(P, P)
b. P verbs P → verb(P, P)

1Since himself and herself are different lexical items, it is unclear if the network will learn their inter-
pretations together, and whether sentences containing himself will provide support for the interpretation
of sentences containing herself. We therefore withhold only sentences of this form with names of a single
gender. We have also experimented with witholding masculine reflexive antecedents from the training
data, but the main effect remains the number of female antecedents that is withheld.
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Figure 3.1: Mean generalization accuracy by number of names withheld in Experiment 3. The (+)
or (−) next to the type of recurrent unit indicates the presence or absence of attention. Error bars
display the standard deviation of accuracies.

Our domain contains 15 distinct feminine antecedents; we perform several iterations of
this experiment, withholding progressively more feminine names from appearing in the
contexts in (22), until only a single feminine name is included in the training data as the
antecedent of a reflexive.

Results

As shown in Figure 3.1, reducing the set of names that serve as antecedents to reflexives
in the training data resulted in lower accuracy on the generalization set. SRNs, especially
without attention, show significantly degraded performance when high numbers of
names are withheld from reflexive contexts during training. With attention, SRN perfor-
mance degrades only when reflexives are trained with a single feminine antecedent (i.e.,
14 names are held out). In contrast, LSTMs both with and without attention maintain
near-perfect accuracy on the generalization set even when the training data allows only
a single antecedent for the feminine reflexive herself. The performance of GRUs varies
with the presence of an attention mechanism: without attention, GRUs achieve near
perfect generalization accuracy even for the most demanding case (training with a single
feminine antecedent), while the performance of GRUs with attention has mean accuracy
near 80%.

We also explored how recurrent unit type and attention affect how models learn
to generalize. One way to gauge this is by examining how quickly networks go from
learning reflexive interpretation for a single name to learning it for every name. Table 3.1
shows the mean number of epochs it takes from when a network attains 95% accuracy
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Architecture # contexts withheld
2 3 6 14

SRN (−) 7.5 5.0 — —
SRN (+) 0.6 0.6 0.6 —
GRU (−) 1.8 2.2 3.4 9.4
GRU (+) 2.2 3.6 5.3 1.5
LSTM (−) 1.2 2.2 4.4 12.2
LSTM (+) 0.6 0.8 1.4 3.4

Table 3.1: Average number of epochs between having learned one context and having learned all
contexts, calculated as the mean difference among runs which succeeded in eventually learning
all contexts once. A ‘—’ in a row indicates that no models were able to achieve this degree of
generalization.

on a single antecedent contexts2 to when it has attained more than 95% accuracy on all
held out antecedent contexts.3

This ‘time to learn’ highlights the disparate impact of attention depending on the
type of recurrent unit; SRNs with attention and LSTMs with attention acquire the gener-
alization much faster than their attentionless counterparts, while attention increases the
length of time it takes for GRUs to learn for all but the condition in which 14 antecedents
werewithheld. Figure 3.2 illustrates another important aspect of reflexive generalization:
it proceeds in a piecemeal fashion, where networks first learn to interpret reflexives
for the trained names and then generalize to the held out antecedents one by one. In
Figure 3.2 we show an SRN without attention, but the same pattern is representative of
the other networks tested.

3.6 Experiment 4: What if Alice doesn’t know anyone?

The experiments we have described thus far removed from the training data input
sentences and logical forms that were exactly identical to those associated with reflexive
sentences. The next pair of experiments increases the difficulty of the generalization
task still further, by withholding from the Experiment 2 training data all sentences
containing the withheld reflexive antecedent, Alice, in a wider range of grammatical
contexts, and testing the effect that this has on the network’s ability to interpret Alice-
reflexive sentences.

2An ‘antecedent context’ is the set of all reflexive sentences with a particular antecedent.
3Note that this doesn’t mean that models retained more than 95% accuracy on all contexts — some

models learned a context, only to forget it later in training; this measurement does not reflect any such
unlearning by models.
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Figure 3.2: Reflexive accuracy with different antecedents during training of an SRN without
attention. Alice, Claire and Eliza were withheld during training while Grace and Isla present in the
training data.

Experiment 4a starts by withholding sentences where Alice appears as the subject of
a transitive verb (including those with reflexive objects, which we already removed in
earlier experiments). This manipulation tests the degree to which the presence of Alice as
a subject more generally is crucial to the network’s generalization of reflexive sentences
to a novel name. We also run a variation of this experiment (Experiment 4b) in which
sentences containing Alice as the subject of intransitives are also removed, i.e., sentences
of the following form:

(23) Alice verbs → verb(alice)
If subjecthood is represented in a uniform manner across transitive and intransitive
sentences, the absence of such sentences from the training data might further impair the
network’s ability to generalize to reflexive sentences.

Results

Experiment 4a The left plot in Figure 3.3 shows the reflexive generalization accuracy
for the runs of the different architectures in the first variant of this experiment. Models
without attention uniformly perform poorly across all recurrent unit types. With atten-
tion, performance is more variable: LSTMs perform at ceiling and SRNs do well for
most random seeds, while GRUs perform poorly for most initializations with a single
seed performing at ceiling. The top portion of Table 3.2 contrasts the means of these
results with the generalization performance on transitives with Alice subjects. Here
again LSTMs without attention performed poorly while those with attention did much
worse on Alice-transitives than on Alice-reflexive sentences.
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Figure 3.3: Mean accuracy on Alice-reflexive sentences in Experiments 4a (left) and 4b (right).

Experiment 4a SRN (−) SRN (+) GRU (−) GRU (+) LSTM (−) LSTM (+)

Alice-
reflexive

0.00 0.80 0.03 0.26 0.00 1.00

Alice-subject
(trans)

0.02 0.83 0.04 0.29 0.03 0.28

Experiment 4b SRN (−) SRN (+) GRU (−) GRU (+) LSTM (−) LSTM (+)

Alice-
reflexive

0.00 0.63 0.00 0.80 0.00 0.83

Alice-subject
(trans)

0.00 0.25 0.01 0.78 0.03 0.23

Alice-subject
(intrans)

0.00 0.80 0.58 0.95 0.98 1.00

Table 3.2: Mean accuracy on generalization sets for Experiments 4a and 4b.

This result at once highlights the role that attention plays in learning this type of
systematic generalization; attention appears to be necessary for recurrent architectures
to generalize in this context. The pattern of results also demonstrates a substantial effect
ofmodel architecture: attentive SRNs substantially outperform themore complex LSTM
and GRU architectures on generalization to Alice-transitives, though this was not the
case for reflexive sentences, where LSTMs showed a substantial advantage.

Experiment 4b The right plot in Figure 3.3 shows the impact of withholding Al-
ice-intransitive sentences from training. As before, models without attention fail on
interpreting Alice-reflexive sentences. LSTMs and SRNs with attention perform nearly
as well as in Experiment 4a, with some seeds performing at ceiling and a somewhat larger
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number than before failing to doing so. In contrast, the performance of attentive GRUs
is improved in this context. The bottom of Table 3.2 shows the mean generalization
accuracy for transitive and intransitive sentences with Alice subjects. In some cases the
transitive subject performance is as in Experiment 4a or worse, but in one case, namely
attentive GRUs, it improves in this more difficult context, paralleling what we saw for
reflexive generalization.

The reversal of GRU (+) and SRN (+) accuracies better lines up with what we might
expect given the complexity of the network architectures, with the more complex GRUs
now outperforming the simpler SRNs. These results also reinforce the connection
observed in those from Experiment 4b on the effects of attention in generalization.

While withholding more information during training as we move from Experiment
4a to 4b might be expected to impair generalization for attentive GRUs, as it did for all
other architectures, we in fact see an increase in performance onAlice-reflexive sentences.
One possible explanation of this surprising result is that the attentive GRU networks
in experiment 4a have learned from the training data a context-sensitive regularity
concerning the distribution of the withheld name Alice, namely that it occurs only as
the subject of intransitive verbs. In Experiment 4b, however, the absence of evidence
concerning the types of predicates with which Alice may occur allows the network to fall
back to a context-free generalization about Alice, namely that it has the same distribution
as the other names in the domain. Note that this explanation is possible only if the
network treats intransitive and transitive subjects in a similar way.

3.7 Experiment 5: What if nobody knows Alice?

In the final experiment, we restrict the grammatical context in which Alice appears by
removing from the training data of Experiment 2 all instances of transitive sentences
with Alice in object position (but it is retained in subject position, apart from reflexive
sentences). In a second variant (Experiment 5b), we further restrict the training data to
exclude all intransitive sentences with Alice subjects. Although English, as a language
with nominative-accusative alignment, treats subjects of intransitives in a grammatically
parallel fashion to subjects of transitives, other languages (with ergative-absolutive
alignment) treat intransitive subjects like transitive objects. Though the word order of
our synthetic language suggests nominative-accusative alignment, intransitive subjects
have in common with transitive objects being the final argument in the logical form,
which might lead to them being treated in similar fashion.

Results

Experiment 5a The left plot in Figure 3.4 shows reflexive generalization accuracy
when the missing antecedent Alice is withheld from transitive objects. In contrast to
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Figure 3.4: Mean accuracy on Alice-reflexive sentences in Experiments 5a (left) and 5b (right).

Experiment 5a SRN (−) SRN (+) GRU (−) GRU (+) LSTM (−) LSTM (+)

Alice-
reflexive

0.03 0.94 0.98 0.60 0.23 1.00

Alice-object 0.00 0.97 0.04 0.25 0.04 0.37

Experiment 5b SRN (−) SRN (+) GRU (−) GRU (+) LSTM (−) LSTM (+)

Alice-
reflexive

0.00 0.65 0.45 0.14 0.00 0.80

Alice-object 0.00 0.94 0.03 0.09 0.03 0.17
Alice-subject
(intrans)

0.00 0.13 0.00 0.00 0.00 0.40

Table 3.3: Mean accuracy on generalization sets for Experiments 5a and 5b.

the results in Experiment 4, the effect of attention is more varied here. While SRNs
and LSTMs without attention perform poorly, GRUs without attention perform well
(for some seeds). As the top panel in Table 3.3 shows, no models without attention
performed well on sentences with Alice in object position. For the models with attention,
SRNs and LSTMs perforrmed uniformly well while the performance of GRUs was more
mixed. On Alice-object sentences attentive SRNs again showed excellent performance,
whereas the GRUs and LSTMs fared less well. At the same time, while GRUs with
attention outperformed GRUs without attention on Alice-object sentences (25% to 4%),
they greatly underperformed them on the reflexive sentences (60% to 98%).

Experiment 5b The right plots in Figure 3.4 shows the effects of further withholding
Alice-intransitive sentences for Alice-reflexive sentences. This manipulation has dev-
astating effects on the performance of all models without attention. For models with
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attention, there is also a negative impact on reflexive generalization, but not as severe.
As shown in the bottom portion of Table 3.3, this manipulation has little impact on the
network’s performance on Alice-object sentences, with SRNs with attention continuing
to perform strongly and the other models performing less well. GRUs continue to in-
teract with attention in unusual ways. While they perform poorly on Alice-object and
Alice-intransitive sentences with and without attention, inattentive GRUs continue to
outperform attentive ones on reflexive sentences.

Overall, as in Experiment 4, LSTMs with attention show the highest accuracy on
the Alice-reflexive sentences by a wide margin, while SRNs with attention attain the best
performance on Alice-object sentences. Unlike in Experiment 4, withholding the Alice-
intransitive sentences from training does not yield any benefit for GRUs with attention
in performance on the reflexive set, in fact the opposite is true. This may be interpreted
once again as evidence that GRUs are treating transitive and intransitive subjects as
belonging to the same category. In Experiment 5a, Alice occurs in both positions, leading
the network to treat it as a subject like any other, and therefore potentially capable of
serving as a subject of a reflexive. Alice’s absence from object position does not impact
the formation of this generalization. In Experiment 5b, on the other hand, where Alice
occurs only as a transitive subject, it leads the attentive GRU to treat it as name with a
distinctive distribution, which impairs generalization to reflexive sentences.

3.8 Conclusions

Because of their abstract meaning, reflexive anaphora present a distinctive challenge for
semantic parsing that had been thought to be beyond the capabilities of recurrent net-
works. The experiments described here demonstrate that this was incorrect. Sequence-
to-sequence networks with a range of recurrent unit types are in fact capable of learning
an interpretation of reflexive pronouns that generalizes to novel antecedents. Our re-
sults also show that such generalization is nonetheless contingent on the appearance
of the held-out antecedent in a variety of syntactic positions as well as the diversity of
antecedents providing support for the reflexive generalization. Additionally successful
generalization depends on the network architecture in ways that we do not fully un-
derstand. It is at present unknown whether the demands that any of these architecture
impose on the learning environment for successful learning of reflexives are consistent
with what children experience, but this could be explored with both corpus and experi-
mental work. Future work will also be necessary to elucidate the nature of the networks’
representations of reflexive interpretation and to understand how they support lexical
generalization (or not).

The question we have explored here is related to, but distinct from, the issue of
systematicity (Fodor & Pylyshyn 1988, Hadley 1994), according to which pieces of rep-
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resentations learned in distinct contexts can freely recombine. This issue has been
addressed using sequence-to-sequence architectures in recent work with the synthetic
SCAN robot command interpretation dataset (Lake & Baroni 2018) and on language
modeling (Kim & Linzen 2020), in both cases with limited success. One aspect of the
SCAN domain that is particularly relevant to reflexive interpretation is commands in-
volving adverbial modifiers such as twice. Commands like jump twice must be interpreted
by duplicating the meaning of the verb, i.e., as jump jump, which is similar to what we
require for the interpretation of the reflexive object, though in a way that does not
require sensitivity to syntactic structure that we have not explored here. Recently, Lake
(2019), Li et al. (2019) and Gordon et al. (2019) have proposed novel architectures that
increase systematic behavior, and we look forward to exploring the degree to which
these impact performance on reflexive interpretation.

Our current work has focused exclusively on recurrent networks, ranging from
SRNs toGRUs and LSTMs. Recent work by Vaswani et al. (2017) shows that Transformer
networks attain superior performance on a variety of sequence-to-sequence tasks while
dispensing with recurrent units altogether. Examining both the performance and train-
ing characteristics of Transformers will allow us to compare the effects of attention and
recurrence on the anaphora interpretation task. This is especially interesting given the
impact that attention had on performance in our experiments.

Finally, while our current experiments are revealing about the capacity of recur-
rent networks to learn generalizations about context-sensitive interpretation, there are
nonetheless limited in a number of respects because of simplifications in the English
fragment we use to create our synthetic data. Reflexives famously impose a structural
requirement on their antecedents (c-command). In the following example, the reflexive’s
antecedent must be student and cannot be teacher.

(24) The student near the teacher sees herself→ see(student, student)
We do not know whether the architectures that have succeed on our experiments would
do similarly well if the relevant generalization required reference to (implicit) structure.
Past work has explored the sensitivity of recurrent networks to hierarchical structure,
with mixed results (Linzen, Dupoux & Goldberg 2016, McCoy, Frank & Linzen 2020).
In ongoing work, we are exploring this question by studying more complex synthetic
domains both with the kind of recurrent sequence-to-sequence network used here
as well networks that explicitly encode or decode sentences in a hierarchical manner.
A second simplification concerns the distribution of reflexives themselves. English
reflexives can appear in a broader range of syntactic environments apart from transitive
objects (Storoshenko 2008). It would be of considerable interest to explore the reflexive
interpretation in a naturalistic setting that incorporate this broader set of distributions.
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Architectural Effects on
Generalization Strategies

4.1 Abstract

Natural language exhibits patterns of hierarchically governed dependencies, in which
relations between words are sensitive to syntactic structure rather than linear ordering.
While recurrent network models often fail to generalize in a hierarchically sensitive
way McCoy, Frank & Linzen 2020 when trained on ambiguous data, the improvement in
performance of newer Transformer language models Vaswani et al. 2017 on a range of
syntactic benchmarks trainedon large data setsGoldberg 2019,Warstadt et al. 2019opens
the question of whether these models might exhibit hierarchical generalization in the
face of impoverished data. In this paper we examine patterns of structural generalization
for Transformer sequence-to-sequence models and find that not only do Transformers
fail to generalize hierarchically across a wide variety of grammatical mapping tasks,
but they exhibit an even stronger preference for linear generalization than comparable
recurrent networks.

4.2 Introduction

One of the fundamental properties of human languages is their sensitivity to relations
among elements that are not easily characterized in linear terms. In phenomena like
subject-verb agreement or reflexive anaphora, the relationship between the agreeing
verb and its agreement target or the reflexive pronoun and its antecedent is not governed
by linear properties like adjacency or recency, but instead by the hierarchical organiza-
tion of the sentence. Similarly, the relationship between related sentences, which are
represented in some grammatical theories as transformational operations or as lexical
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rules in others, is also governed by hierarchical organization. English polar questions,
for instance, involve the fronting of an auxiliary verb in the corresponding declarative
to a sentence-initial position. Questions with complex subjects like (25a) demonstrate
that the verb that is fronted in such cases is the determined by hierarchical prominence
(i.e., move­main yielding (25b)) and not linear considerations (move­first yielding (25c)
or move­last yielding (25d)).

(25) a. [The president who can smile] will lead [those who would sing].
b. Will the president who can smile lead those who would sing?
c. * Can the president who smile will lead those who would sing?
d. * Would the president who can smile will lead those who sing?

Chomsky (1971) argues that, in spite of receiving little input of the form in (25b), which
would unambiguously demonstrate the necessity for a hierarchically governed depen-
dency, children uniformly generalize the process of question formation in a hierarchical
fashion. Such consistent behavior suggests that humans possess an inherent bias of some
sort towards hierarchical generalization (though see Ambridge, Rowland & Pine (2008)
and Perfors, Tenenbaum & Regier (2011) for arguments against this view). Replicating
such a bias in generalization would indicate the ability to mimic patterns of human
cognition and learning.

Previous investigations of recurrent neural architectures have yielded some evi-
dence for hierarchically-governed linguistic knowledge Gulordava et al. 2018, Marvin
& Linzen 2018, Hu et al. 2020. Even greater success has been achieved with neural
networks the incorporate explicit representation of syntactic structure Kuncoro et al.
2018. Architecturally-constrained models when trained without explicit information
about syntactic structure show only modest benefits Shen et al. 2018, Kim et al. 2019,
Merrill et al. 2019. However, all of these studies involve models that are trained on large
quantities of text which may not be impoverished in domains that these benchmarks
assess. As a result, it is unclear whether any apparent hierarchical behavior reported in
these works is the effect of a bias for hierarchical generalization or the accumulation
of patterns explicitly guided by the training data. McCoy, Frank & Linzen (2020) take
a different tack: the training data is carefully controlled so that hierarchical behavior
can emerge only if a model itself is biased to extract hierarchical generalizations. Their
experiments demonstrate that recurrent neural network seq2seq models show a clear
preference for linear generalization.

The recently developed Transformer architecture has led to revolutionary advances
across many areas of natural language processing, including machine translation and
question answering Vaswani et al. 2017, Devlin et al. 2019. Transformer-based models
have also shown considerable success on benchmarks that appear to require the repre-
sentation of hierarchical abstractions Rogers, Kovaleva & Rumshisky 2020, Goldberg
2019, Warstadt et al. 2019. Further, investigations of Transformers’ representations of
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sentences Hewitt & Manning 2019, Lin, Tan & Frank 2019 point to encodings of hier-
archical syntactic structure. Yet, for the reasons noted above, it is difficult to conclude
much about the inductive bias in the Transformer: they are trained on vast datasets,
leaving open the question of the impact of inductive bias as opposed to training data
(Warstadt & Bowman (2020), but see van Schijndel, Mueller & Linzen (2019) for ar-
guments that even massive data may not be sufficient). This paper contributes to our
understanding by examining the degree to which the Transformer architecture is biased
toward hierarchical generalization when the data underdetermine such generalization.
Specifically, we study whether Transformers learning sequence-to-sequence mappings
generalize in a structure sensitive way, and compare their performance with recurrent
models.

4.3 Experiments

Our experiments involve a variety of English-language transduction tasks that highlight
hierarchically-governed patterns. For each task, the training data is ambiguous between
a linear and hierarchical generalization. This allows us to evaluate performance on
both a test set, drawn from the same distribution as the training set, and a gen set of
data, that contains out-of-distribution data consistent only with hierarchical patterns of
generalization.

We compare transformer models with a number of recurrent architectures (LSTMs
and GRUs with no attention, with additive attention Bahdanau, Cho & Bengio 2016,
and with multiplicative attention Luong, Pham & Manning 2015). Transformer models
follow their usual implementation with self- and multi-headed attention. For each model
type, we perform 10 runs, initialized with different random initial seeds, and report
median accuracy metrics. Recurrent units are single-layer models, with hidden and
embedding dimensions of 256. Transformers are 4-headed, 3-layer models with hidden
and embedding dimensions of 128. All models are trained at a learning rate of 0.01 using
SGD optimization for 100 epochs with early stopping.

Polar Question Formation

Ourfirst task involves the process of question formation discussed earlier. We borrow the
formulation of this task fromMcCoy, Frank&Linzen (2020): the training dataset consists
of an input sentence (a simple declarative with relative clauses optionally modifying the
subject and object), a transformation token, decl or quest, and an output sentence. The
transformation token specifies what the form of the target output should be. Following
the logic surrounding example (25), examples with subject-modifying relative clauses
are never paired in the training data with the quest transformation token. As a result,
the network is not trained on sentences in which an auxiliary verb must be fronted
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past an intervening relative clause, and the target generalization is therefore ambiguous
between something akin to move­main and move­first. While a network that acquires
the move­first generalization will succeed on the in-distribution test set consisting of
examples of the same structure as in the training data, it will fail on the gen set consisting
of input sentences with subject-relative clauses and the quest transformation.

All trained network types performed well on the in-distribution test set, attaining
mean full-sentence accuracies of at least 95%. In contrast, none of the models succeeded
on the gen set in full sentence accuracy. Following McCoy, Frank & Linzen (2020),
we instead assess gen set performance using the more lenient metric of first-word
accuracy. Since the gen set includes only sentences with distinct auxiliary verbs in
the main and relative clauses, the identity of the first output word reveals whether the
network has acquired a linear (move­first) or hierarchical (move­main) generalization.
Results are shown in Figure 4.1. As noted in McCoy, Frank & Linzen (2020), there is

Figure 4.1: Proportion of first-word predictions consistent with hierarchical generalization in the
question gen set. A (+) denotes additive attention, (×), multiplicative. Horizontal bars denote
max, median, and min values.

variation in performance among the different types of recurrent networks: GRUs with
multiplicative attention achieved median accuracy of 32.9%. Transformers exhibit the
worst median performance among all architectures surveyed, with a median first-word
accuracy of just 0.03% and virtually no variability across different random initializations.
Instead, Transformer models overwhelmingly predicted sequences consistent with a
linear move­first rule on the gen set. These results are robust across changes in learning
rate.
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Tense Reinflection

Our second mapping task, again borrowed from McCoy, Frank & Linzen (2020) involves
the reinflection of a sentence with a past tense verb into one with either a past or present
tense verb. Significantly, the English present tense involves structurally-conditioned
agreement with the verb’s subject. In complex expressions like (26a), distractor nouns
with different number within the subject linearly separate the verb from the subject, but
the grammatical agreement is nonetheless governed by a hierarchical agree­subject
relation (predicting (26b)). as opposed to an agree­recent relation (predicting (26c)).

(26) a. My newt near the elephants ran.
b. My newt near the elephants runs.
c. * My newt near the elephants run.

Our datasets consist of past-tense English sentences as inputs, optionally with preposi-
tional phrases or relative clauses modifying the subject or object, along with pres and
past transformation tokens that indicate the form of the target output. For training and
in-distribution test data, examples with the pres token do not have modified subjects, so
that the reinflection mapping is ambiguous between agree­subject and agree­recent.
In contrast, the gen set includes sentences where the two rules make different predic-
tions (modified subjects with distractor having distinct number). Results are shown in
Figure 4.2. Like the recurrent architectures, Transformers systematically fail to exhibit
hierarchical in favor of linear generalization.

Figure 4.2: Proportion of linear and hierarchical predictions on the reinflection gen set.
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Negation

Our third task involves the conversion of an affirmative sentence into a negative one.
Negation requires the insertion of the negative marker “not” immediately prior to the
main verb.

(27) a. The bird will sing.
b. The bird will not sing.

When an adverbial clause is placed before or after the main clause (28), the main verb is
no longer consistently the linearly first or last verb in the sentence.

(28) a. The bird will sing because the cat will swim.
b. The bird will not sing because the cat will swim.
c. Because the cat will swim the bird will not sing.

Our dataset consists of affirmative sentences, with adverbial clauses optionally preceding
or following the main clause. These are transformed either into (identical) affirmatives
or corresponding negatives. The training and in-distribution test set excludes sentences
with initial adverbial clauses that must be mapped to negatives. As a result, this data set is
ambiguous between a linear neg­first generalization and a hierarchical neg­main. This
ambiguity is resolved in the gen set, which contains sentences with preceding adverbials
that must be converted into negative sentences, following the neg­main generalization.

All models, including the Transformer, perform exceedingly well on in-distribution
data, attaining near-ceiling full-sentence accuracy on the test set. By contrast, all
models, again including the Transformer, fail uniformly on the gen set, attaining near-
zero performance even using a more forgiving metric looking only at correct placement
of the negative marker. Closer examination of the model outputs on the gen set reveals
that networks of all sorts overwhelmingly produce predictions consistent with the linear
generalization (neg­first).

Reflexive Anaphoric Interpretation

Our final task, similar to that of Kim & Linzen (2020) and Frank & Petty (2020), involves
the semantic parsing of a sequence into a predicate calculus representation, as in (29).

(29) Alice sees Bob→ see(alice, bob)

For entities whose meaning is context-independent, like nouns or verbs, this task in-
volves learning a combination of token correspondence and form composition. As Frank
& Petty (2020) note, reflexive anaphora like “herself” present a challenge since their mean-
ing is not context-independent but rather conditioned on a linguistically-determined
antecedent. In sentences with complex subjects, like that in (30) with a prepositional
phrase modifier, the identification of the correct antecedent for the anaphor is condi-
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tioned not by the linear distance between a potential antecedent and the reflexive but
rather by the hierarchical relation between the antecedent and reflexive.

(30) The boy by the king sees himself→ see(boy, boy) ∧ by(boy, king)

Our in-distribution data consists of sentences, transitive and intransitive, paired
with predicate calculus representations of their meanings. Input sentences in this set
may have complex subjects or the reflexive objects (“himself” or “herself”), but not both.
As a result, the training and test data does not disambiguate whether the reflexive is
co-referent with the grammatical subject or the noun phrase immediately preceding
the verb. The gen set contains only sentences reflexive objects and complex subjects
containing prepositional phrases, and therefore serves to distinguish between the linear
and hierarchical generalizations.

All models examined perform well on the test set, attaining median full sequence
accuracy of 100%. Results on the gen set, as shown in Figure 4.3, are more varied.

Figure 4.3: Proportion of reflexive-linear, subject-linear, and hierarchical predictions in the
anaphora gen set.

We categorize the predictions made by the network into three distinct classes:
subject-verb linear, where the model interprets the subject of the verb as being the
linearly most recent noun (incompatible with the training data); reflexive linear, where
the model interprets the antecedent of the reflexive as being the linearly most recent
noun (compatible with the training set); and hierarchical, where the model correctly
interprets both the subject and antecedent in a manner consistent with the hierarchical
structure of the sentence (also compatible with training). Transformers and GRU models
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overwhelming make predictions consistent with reflexive linearity. LSTMs are more
varied, with inattentive LSTMs attaining the highest hierarchical scores of all network
types with a median performance of 65.8%.

4.4 Conclusion

Transformers have shown great success on syntactic benchmarks. Is this because the
architecture has useful syntactic biases, or is it because cues to hierarchical structure are
present in their training data? Our results find no evidence for the former, suggesting
that their syntactic successes can mainly be attributed to their ability to leverage massive
training sets rather than linguistically-relevant architectural biases. Though the Trans-
former models studied here were the best performers on in-distribution data across
all tasks, their strong preference for linear over hierarchical generalization suggests an
explanation for their poor performance on tasks requiring structural generalization (Kim
& Linzen 2020) despite their promise in other syntactically sensitive tasks. Finally, we
note that the preference we have observed for linear generalization is consistent with
previous theoretical work on the (limited) expressive power of Transformers Hahn 2020,
Merrill 2019.



Chapter 5

Alice’s Adventures in
Reflexiveland

5.1 Introduction

Chapter 3 demonstrates that inattentive recurrent neural networks are capable of solving
the problem of reflexive anaphora resolution to a high degree of generality on limited
training support. In particular, experiments Alice-1 and Alice-2 show, in part, that
inattentive GRUs and SRNs are capable of learning to generalize knowledge of a reflexive
anaphor like herself to an antecedent Alice which has been withheld from syntactically
reflexive (Alice-1) and semantically reflexive (Alice-2) contexts during training when
the problem is presented in a sequence-to-sequence context. As shown in Chapter 2,
reflexive anaphora resolution is equivalent to an �3 level of algebraic generalization on
the proposed typology of generalization classes, and is hence a strictly stronger problem
than something akin to G. F. Marcus (1998a)’s original identity generalization task (�2),
or the lexical generalization results obtained in Kim & Smolensky (2021) (�2, and see
Chapter 6 for additional such results). Our constructive results here stand in contrast
to those of Frank, Mathis & Badecker (2013), where treatment of the same anaphora
resolution task in a language modelling context found that such inattentive recurrent
models were unable to achieve lexical generalization to withheld antecedents.

These positive results then demonstrate that the theoretical incapability of recurrent
networks to solve such �2- and �2-class problems is not borne out. Yet the discrepancy
between the results presented in the previous chapter and the earlier negative results of
G. F. Marcus (1998a) and Frank, Mathis & Badecker (2013) raise important questions:
how are models able to solve such generalization problems in the absence of explicit
inductive biases, like attention mechanism, to do so? To what extent is the sequence-to-
sequence design context an inductive bias for such generalization tasks?

48



Chapter 5. Alice’s Adventures in Reflexiveland 49

To move towards an answer to these broad questions, in this chapter we consider
two methods for attempting to elucidate the mechanisms inattentive SRN and GRU
models employ to learn a generalized rule for reflexive anaphora resolution. We begin
by trying to determine where in these models the resolution of anaphora actually occurs,
drawing inspiration from well-known observations of word-embedding models to test
if our models learn analogical representations of input sequences and using this to test
how models treat herself in various conditions. We then relax this experiment to try
to characterize the embedding space of the models to understand how the decoder
interprets vectors in the hidden embedding space. Finally, we draw connections to
recent work done in modelling embedding spaces using explicit hypothesis for input-
embedding representations and theorize about ways this can be used to provide a more
explicit characterization of how models learn to represent contextually-ambiguous
inputs in a generalizable way.

5.2 Analogical Arithmetic

Our first attempt at understanding how and when these networks solve the task of
reflexive anaphora resolution seeks to clarify where within the model this resolution
takes place. Since a trainedmodels is able to interpret an input sequencewith an arbitrary
antecedent correctly, it must at someone resolve the representation of an input sequence
like Alice sees herself such that the decoder will ultimately produce the correct output
sequence ‘see(alice, alice)’. There are two possibilities for where the model achieves
this resolution: either the model resolves herself to the correct antecedent in the encoder,
or it does so in the decoder.

To elucidate where inside thesemodels the resolution takes place, we take inspiration
from the observed properties of word embedding models, like Word2Vec (Mikolov et
al. 2013). These models compute continuous vector representations of words drawn
from large corpora, optimizing for distance in encoding space as a measure of semantic
similarity under the intuition that the encodings of words which are semantically similar
to one another ought to be represented as vectors which are relatively near compared to
the encodings of words which are semantically distant. In addition to achieving good
performance on tasks measuring syntactic and semantic word similarity (Mikolov et al.
2013), word embeddings display properties of linearity which correspond nicely to
naïve intuitions about the semantic distance between interpretable sentences (Allen &
Hospedales 2019).

Concretely, word embeddingmodels appear to encode information akin to analogical
semantics even though they are not explicitly trained to do so. For instance, consider
the following word-level analogy:
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(31) man is to king as woman is to

Providing an answer to this analogy (say, queen) involves making a semantic judgement
about the relationship between the first pair of words and then applying that same
relationship to the different thirdword to produce a fourth. Word embeddings optimized
for semantic similarity appear to latently represent this semantic relationship as vector
displacement; thus, given an analogical relationship like (32a), it is often the case that
a word embedding model will display the property shown in (32b), where w7 is the
embedding of E7.

(32) a. E0 is to E0′ as E1 is to E1′

b. w1 + (w0′ −w0) ≈ w1′

In the context of word embedding models, this larger, structural pattern is surprising
given that metrics for word similarity are only computed using local distributional data
from training corpora (Allen & Hospedales 2019). However, given that the embedding
model’s task is to build functional representations of lexical data in a vector space, it is nat-
ural to view the encoder component of a sequence-to-sequence model as an extension of
these simpler skip-gram models. Indeed, encoders contain an learned word-embedding
layer prior to the recurrent layers which operate on the vectors produced by this learned
embedding (Sutskever, Vinyals & Le 2014). If we think of the encoder as an embedding
model which takes in a sequence of input tokens and produces a high-dimensional
representation of this sequence on the joint basis of input and output distribution, we
might wonder if the encoding vectors which are passed to the decoder represent the
semantic content of the input sequences in an analogously interpretable fashion, where
displacement between two encodings corresponds to the semantic difference between
the two respective input sequences.

If this were the case, how could we tell whether or not the encoding of an input like
Alice sees herself had already resolved the anaphor herself → alice? A naïve first guess
might be to simply compare the encoded representations of a true reflexive sentence like
Alice sees herself with that of its corresponding pseudoreflexive sentence Alice sees Alice;
since both of these inputs will ultimately be decoded as the same sequence, it would
be reasonable to hope that a model which resolves reflexive anaphora in the encoder
might simply map both sequences to vectors so functionally close by to one another in
encoding space that the difference between the two was marginal. That is, it could be
as in (33) that the displacement between the two encodings is approximately the zero
vector in the encoding space, where “approximate” means that the magnitude is small
enough that it is treated as irrelevant by the decoder (i.e., we could perturb any valid
encoding of an input sequence by this displacement vector and it would not affect the
output decoding).
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(33) Enc(Alice sees Alice) − Enc(Alice sees herself ) ≈ 0

While an invariantly-null1 displacement vector would imply that a model resolves
anaphora in the encoder, it is not the case that encoder resolution entails an invariantly-
null displacement vector; it may just as well be the case that the encoder simply redun-
dantly encodes the identity of reflexive anaphora separately from the interpretations of
pseudoreflexive sentences, where Enc(Alice sees herself) and Enc(Alice sees Alice) both
separately decode to ‘see(alice, alice)’ but they are not encoded as each other. In this
scenario, the displacement vector between the encodings would act as a kind of seman-
tic displacement capturing the distinction between the ‘reflexive’ and ‘pseudoreflexive’
meanings of each input sequence.

On the other hand, it might be the case that the encoder merely encodes herself as its
own token and defers responsibility for resolving the input on to the decoder. To distin-
guish between these two possibilities, we can turn back to the analogical displacement
model to provide a possible test for encoder resolution. If we assume that the encoder
does represent analogical semantics in the same way that word embeddings are observed
to do, consider the following analogical setup:

(34) Alice sees Mary is to John sees Mary as Alice sees Bob is to John sees Bob

Here the analogical relationship represented between the two pairs of sentences is a
change-of-subject; the corresponding displacement vector

(35) ΔJohn,Alice = Enc(John sees Mary) − Enc(Alice sees Mary)

would encode the difference between John and Alice as the sentential subject. Performing
this kind of analogical arithmetic is then a kind of encoding-space subject replacement,
where we use this displacement vector to swap out the subject of a different sentence,
like in (36) below.

(36) Enc(John sees Bob) + ΔJohn,Alice ≈ Enc(Alice sees Bob)

Consider now the effect of performing this subject replacement on reflexive sen-
tences: let ΔA→M be the displacement vector between the encodings of Alice knows Bob
and Mary knows Bob, and consider the sum below.

(37) Enc(Alice knows herself) + ΔAlice,Mary

If the pattern of (36) holds, (37) should have the encoding representation of Alice knows
herself with the subject Alice swapped for Mary. But, how should the model interpret
herself now that the subject has been replaced?

If the result of this arithmetic is interpretable, there are two sensible outcomes: if
the encoder is responsible for resolving anaphoric identity, then the subject replacement

1Invariantly-null meaning that the displacement vector is approximately zero for all reflexive-
pseudoreflexive sentence pairs in the input domain.
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will have no effect on the identity of the object, as in (38a); or else, if the encoder does
not resolve anaphoric identity then this sum passed to the decoder will be interpreted as
herself in the context of Mary, as in (38b).

(38) a. Enc(Alice knows herself) + ΔAlice,Mary → know(mary, alice)
[Encoder resolution]

b. Enc(Alice knows herself) + ΔAlice,Mary → know(mary,mary)
[Decoder resolution]

This distinction recalls a property of the semantic interpretationof reflexive anaphora
observed in natural language, known as the ‘strict-sloppy’ reading distinction. Consider
a case of simple VP ellipses like that of (39) below.

(39) a. John goes to see Mary, and Bill does too
b. → Bill goes to see Mary

Here, the elision of the second VP does not impact the meaning of the conjoined phrase,
since the content of the first predicate is copied over to the second. For simple predicates
such as that in (39), this interpretation is trivial. But consider a case where the predicate
contains a reflexive anaphor, as in (40) below.

(40) John likes himself, and Bill does too

Here, the elision of the second VP creates an ambiguity in the interpretation of the
second phrase: does himself retain the interpretation it has in its original position (i.e.,
john) or does it get re-resolved in its semantically-copied position (i.e., bill)? These
two possibilities, shown in (41a) below, are known as the ‘strict’ and ‘sloppy’ readings of
anaphora, respectively.

(41) a. John likes himself, and Bill does too [like himself]
b. → Bill likes John [strict identity]
c. → Bill likes Bill [sloppy identity]

Note that reflexive anaphora are usually taken to only have a sloppy interpretation; that
is, an expression like (41a) will only be interpreted by human speakers as (41c).

In our contrived example of subject-replacement on reflexive sentences, we can draw
a parallel between encoder resolution and strict identity, where the reflexive anaphor
retains the interpretation it originally had; and between decoder resolution and sloppy
identity, where the interpretation changes as the anaphor is reinterpreted in its new
context.

A Note on Sensibility and Interpretability

While the arithmetic trick described above presents a clever way to distinguish between
encoder- and decoder-resolution of reflexive anaphora, its validity only holds under
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some very strong and potentially unfounded assumptions. The linearity properties
of word embedding models are surprising, given that the models do not optimize for
representing this kind of higher-order structure. We have no a priori reason to assume
that the encoders of our trained models should behave in this way, and it is entirely
possible that the results of this arithmetic surgery are uninterpretable: the decoder may
produce expressions which are malformed, or which do not have sensible connections
to the initial input sequences involved. Furthermore, the decoder may not treat such
sums uniformly, instead producing different kinds of results depending on the inputs.

With this note of caution heeded, it is still worth exploring how our models perform
when given the task of decoding a hidden representation which has been selectively
modified in such a way as to attempt to force the encoder into revealing its tricks. If
the models do show a categorical preference for one method of resolution over another,
as tested by this analogical arithmetic, then we will know not only where resolution
happens in the model but also that the encoding representations display the same kind
of unexpected linearity as is found in word embedding models. If models exhibit proba-
bilistic, but not categorical preference for one method of resolution over another, we
likewise learn that models exhibit variability in their methods of resolution. And finally,
if this arithmetic task is founded on untenable assumptions about the properties of the
encoding space, we learn that the encoding representations do not display the same
properties as word embedding models. Furthermore, by analyzing the ways in which
the attempted decoding of arithmetically-modified encoding representations fails, we
may learn about how the decoder treats systematically malformed inputs.

Experimental Setup

We test inattentive SRN and GRU models trained on the Alice-2 experiment described
in Section 3.4, where both reflexive (42a) and pseudoreflexive (42b) sentences involving
Alice as an antecedent are withheld frommodels during training. Models are then trained
on a training set containing reflexive, non-reflexive, and pseudoreflexive sentences-
interpretation pairs. As noted in Section 3.4, both SRN and GRU models perform
near-ceiling on the test and generalization sets, indicating that both model variants have
acquired robust algebraic generalization over the input space.

(42) a. Alice sees herself → see(alice, alice)
b. Alice sees Alice → see(alice, alice) [withheld from Alice-2]

We choose to analyze these models for several reasons: first, Alice-2 is a strictly harder
task than Alice-1, since models do not receive any training support to suggest that an
input sequence will ever map to an output containing alice in both subject and object
position. Despite this additional difficulty, both inattentive SRNs and GRUs are able to
solve this task to near-perfect accuracy on the generalization set. Since Alice-2 is more



Chapter 5. Alice’s Adventures in Reflexiveland 54

difficult, it sands to reason that the generalization learned by models in Alice-2 is more
robust than that learned in Alice-1, and therefore represents a better subject of inquiry
if we wish to understand how simple models are able to learn algebraically general rules.

Second, the performance of inattentive SRN models begins to degrade in the sub-
sequent, harder experiments (Alice-3, -4, and -5), meaning that analysis conducted
on models from those experiments will not yield any insights into how SRN models
successfully exhibit algebraic generalization.

We choose to focus on SRNs and GRUs, to the exclusion of the inattentive LSTMs
and the attentive SRNs, GRUs, LSTMs, and transformer models additionally surveyed
in Chapter 3 and Chapter 4 for two reasons. First, the positive results obtained in these
chapters are most surprising for the computationally simpler models. Inattentive models
lack any of the benefit conferred by the inductive bias of attention, which as previ-
ously noted in Chapter 2 models the exact phenomenon of permutation equivariance
needed to solve algebraically general problems; SRNs and GRUs are also simpler than
LSTMs, meaning they lack as much computational expressiveness (Merrill et al. 2020).
Since we care most about how these unexpectedly-performant models manage to solve
algebraically general tasks, it makes sense to focus our analysis on these simpler models.

Second, the limited computational capacity of inattentive SRNs andGRUs is reflected
in their relatively simple implementation when compared to LSTMs (which make use
of an extra computational cell passed between encoding and decoding steps), attentive
versions of the three recurrent architectures used, and transformers. Since mucking
about with the internal representations of the encoder is not a task which is provided
out of the box for PyTorch models, limiting our current analysis to just inattentive SRNs
and GRUs results in a more manageable and verifiable codebase.

We delineate three different ways of using the analogical arithmetic described in the
previous subsection to probe the behavior of the models’ encoders: subject replacement,
verb replacement, and object replacement. In each case, we attempt to permute tokens of
the relevant grammatical category using displacement vectors as described previously.

For clarity of reference, we will introduce the following terminology to refer to
components of an analogical arithmetic expression.

(43) a. ", #-Displacement Vector: Let U and V be elements of a particular syntactic
category (here, either subject, verb, or object). The displacement vector ΔU,V

is the vector formed by subtracting expression f2 from f1 where U ∈ f1 and
V ∈ f2 and f1 is identical to f2 for all tokens excepting U, V. Note that for
any given U, V there are actually many different displacement vectors {ΔU,V}
corresponding to different choices of f1 and f2. When referring ΔU,V , know
that it refers to an arbitrary member of {ΔU,V}.

b. Operand: Let ΔU,V be an U, V-displacement vector and let f be an input se-
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quence containing U. In the expression

Enc(f ) + ΔU,V ,

we refer toEnc(f ) as the operand—the encoding or expression being operated
on by ΔU,V .

In addition do distinguishing between different kinds of analogical arithmetic ex-
pressions based on the category of the token being replaced, we can further refine a
classification of these expressions based on the properties of the operand in the ex-
pression. Since reflexive, pseudoreflexive, and non-reflexive input sequences have thus
far proven useful analytical classes of input sentences, we believe it is worthwhile to
distinguish category-replacement with reflexive, pseudoreflexive, and non-reflexive
operands. To provide a concrete example consider the typology of subject replacement
shown below in (44), where Δ�,< is a subject displacement vector between alice and an
arbitrary name <:

(44) Subject Replacement Typology

a. Enc(Alice sees herself) + Δ�,< [Reflexive (Refl.) operand]
b. Enc(Alice sees Alice) + Δ�,< [Pseudoreflexive (PR) operand]
c. Enc(Alice sees Bob) + Δ�,< [Non-reflexive (NR) operand]

For each combination of model architecture, category, and operand we take a
model of the requisite type and generate 10, 000 random arithmetic expressions of the
appropriate category-operand type, perform the arithmetic surgery on the operand,
and decode the resulting sum as if it were a normal input’s encoding. We evaluate the
decoded sequence on a variety of accuracy metrics, where each metric is reported as
an average over the 10, 000 predictions. The following four metrics are reported for all
category-replacements:

(45) a. Sentence Accuracy: Measures full sequence accuracy of the output, where
model scores 1 on an input if the output matches the target, or else 0 if there is
any discrepancy. Note that for reflexive operands undergoing subject replace-
ment, we count outputs as correct if they are consistentwith encoder resolution
of anaphora (where the predicted object is identical to the operand’s original
subject) or with decoder resolution (where the subject and object are both
equal to the new subject introduced by the subject-replacement displacement
vector).

b. Subject Accuracy: A model scores 1 if the tokens in the subject position of
the output and target agree, or else 0.

c. Verb Accuracy: A model scores 1 if the tokens in the subject position of the
output and target agree, or else 0.
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d. Object Accuracy: A model scores 1 if the tokens in the object position of the
output and target agree, or else 0.

Additionally, we report three metrics which measure the degree to which models predict
that a given results of arithmetic surgery is reflexive.

(46) a. Predicted Reflexive: The proportion of the outputs which are reflexive rel-
ative to the total number of predictions. Note that for NR and PR operands,
a prediction is only counted as ‘reflexive’ if the predicted subject and object
are identical, while for reflexive operands in subject and verb replacement a
prediction is also counted as ‘reflexive’ if the predicted object is identical to the
original operand’s subject. This corresponds to the case where the resolution
of herself happens in the encoder, and so in such cases the output is still a
valid interpretation of a reflexive sentence. For reflexive operands undergoing
object replacement, we again only count a prediction as ‘reflexive’ if the subject
and object are identical since object replacement of a reflexive operand should
necessarily result in a distinct subject and object, and so there are no felicitous
results which could have a reflexive interpretation but decode to an output
with distinct subject and object.

b. (dec): Reports the percentage of the reflexive outputs which show resolution
consistent with decoder resolution, where the subject and object are identi-
cal. Note that this metric is only interpretable if the result of the arithmetic
surgery should still have a representation of a reflexive anaphor (i.e., subject
replacement on reflexive operands), so we omit this metric when in all other
cases.

c. (enc): Reports the percentage of the reflexive outputs which show resolution
consistent with encoder resolution, where the object of the output is identical
to the original subject of the operand. Note that thismetric is only interpretable
if the result of the arithmetic surgery should still have a representation of a
reflexive anaphor (i.e., subject replacement on reflexive operands), so we omit
this metric when in all other cases.

Finally, note that in each table of results for category-replacement, the category
Accuracy measure has been highlighted in grey. This is to distinguish between the
accuracy of themodel on the categorywhich should have undergone replacement and the
accuracy of the model on categories which may have undergone spurious modification
as a result of the analogical arithmetic.

Subject Replacement Results

We conduct subject replacement surgery on NR, PR, and reflexive operands, as typified
below in (47).
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(47) Subject Replacement

a. Enc(Alice sees Bob) + ΔAlice,Mary ≈ Enc(Mary sees Bob) [NR]
b. Enc(Alice sees Alice) + ΔAlice,Mary ≈ Enc(Mary sees Alice) [PR]
c. Enc(Alice sees herself ) + ΔAlice,Mary ≈ Enc(Mary sees herself) [Refl.]

Table 5.1 shows the results of each model type decoding the results of this analogical
arithmetic. Prima facie, the most notable figure reported here is the fact that GRU
models display a categorical failure to permit subject replacement when the operand
is not lexically reflexive (e.g., herself ); on NR and PR operands, GRU models uniformly
decode the results of the subject replacement incorrectly as reflexive outputs. On NR
operands, models are strongly biases towards overgeneralizing the object, replacing
the true subject with the original object by a two-to-one margin. On PR operands, this
trend is reversed, where models categorically overgeneralize the subject, replacing the
actual object with the new subject. For reflexive operands, GRU models score quite well,
performing at ceiling and displaying a clear categorical preference for interpreting the
results of subject replacement in a manner consistent with decoder-resolution of the
reflexive pronouns.

SRN GRU
NR PR Refl NR PR Refl

Sent Acc 0.622 0.646 0.317 0.001 0.000 0.993
Subj Acc 0.787 0.806 0.716 0.333 0.843 0.933
Verb Acc 1.000 0.998 0.994 1.000 1.000 1.000
Obj Acc 0.771 0.779 0.339 0.662 0.152 0.003

Pred Refl 0.016 0.002 0.317 0.997 0.999 1.000
(dec) — — 0.155 — — 1.000
(enc) — — 0.845 — — 0.000

Table 5.1: Subject-replacement accuracies by model and operand

In comparison to this all-or-nothing reflexive performance of theGRUs, SRNmodels
display more middling, less categorical performance. While SRNs do not spuriously
produce reflexive outputs from NR or PR operands, they permit subject replacement
only about 63% of the time. Accuracy on the individual objects or replace subjects is
higher (around 78% in each case), suggesting that the instances of failure are uncorrelated
and the lower performance on the full sentence accuracy is simply a result of these
errors not overlapping. On reflexive predicates, though, SRN performance is quite a
bit worse: models only generate reflexive outputs in 32% of cases, with the majority
of the error arising from incorrect predictions for the object (while subject accuracy
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dips only slightly to 72%, object accuracy drops strongly to only 34%). This suggests that
SRNs’ encoding of reflexive objects is somehow less separable than that of non-reflexive
objects, permitting subject replacement at a far lower rate in reflexive operands. Of
the reflexive operands which are decoded in a manner consistent with the expected
results of subject replacement, SRNs display a clear preference for decodings consistent
with encoder resolutions of reflexive anaphora, though this preference isn’t quite as
categorical as that of GRUs.

Both SRN and GRU models demonstrate near-perfect verb accuracy, suggesting
that for both models the encoded representation of the verb is separable enough not to
be impacted by the subject replacement operation.

Verb Replacement Results

We conduct verb-replacement surgery on NR, PR, and reflexive operands, as typified
below in (48).

(48) Verb Replacement

a. Enc(Alice sees Bob) + Δsees,knows ≈ Enc(Alice knows Bob) [NR]
b. Enc(Alice sees Alice) + Δsees,knows ≈ Enc(Alice knows Alice) [PR]
c. Enc(Alice sees herself ) + Δsees,knows ≈ Enc(Alice knows herself ) [Refl.]

Table 5.2 reports how the various models decoded the results of this arithmetic. As is
the case in subject replacement, both SRN and GRU models display high levels of verb
accuracy, indicating that for both architectures the representation of the verb in the
embedding space is targetable by replacement in a robust manner.

GRU models again display an overall categorical failure on non-reflexive operands,
again owing to errors in the subject or object decoding due to models spuriously produc-
ing reflexive outputs. By a roughly two-to-one margin, GRU models on NR operands
favor overgeneralizing the object to the subject. On PR operands, however (in contrast to
their performance on subject replacement), and on reflexive operands the GRU models
exhibit at-ceiling performance. This suggests that GRU models are representing the
identity of the subject and object of an input in a linked way, and that this representation
is mildly sensitive to displacement by the verb representation. Thus in verb replacement,
when the subject and object are distinct, verb replacement causes the model to interpret
the result as reflexive, with a bias towards preserving the identity of the object. For
PR and reflexive predicates, since the result is still reflexive, this displacement has little
effect. In cases of subject replacement, however, the model preserves the identity of the
new subject at the expense of the original object, resulting in total failure on both NR
and PR operands but success on reflexive ones.

Compared to GRUs, SRNs exhibit more stable, although worse, performance across
operand type. Models achieve around 75% full sentence accuracy on NR operands,
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SRN GRU
NR PR Refl NR PR Refl

Sent Acc 0.748 0.829 0.644 0.001 0.996 1.000
Subj Acc 0.871 0.905 0.861 0.315 1.000 1.000
Verb Acc 0.999 0.999 0.996 0.999 0.998 1.000
Obj Acc 0.854 0.891 0.707 0.637 0.999 1.000

Pred Refl 0.005 0.859 0.646 0.997 0.999 1.000

Table 5.2: Verb replacement accuracies by model and operand

raising to 83%accuracy onPRoperands and falling to 64%on reflexive operands. Notably,
as with GRUs, SRNs permit felicitous verb replacement on all types of operands, scoring
at-ceiling on Verb Accuracy for NR, PR, and reflexive operands. Failure, then, comes
from spurious changes to the subject and object tokens as a result from verb replacement.
For all operand types, we observe that models are better at preserving subject identity
than object identity, although the difference is not strongly pronounced. While GRUs
display complementary failures at preserving subject and object identity, SRNs exhibit
no such correlation between subject and object accuracies. Rather, changes in overall
sentence accuracy are attributable to independent changes in the underlying subject
and object accuracies. Notably, SRN models to not display a tendency to over-generate
reflexive forms when none are required

Object Replacement Accuracy

We conduct object replacement on NR, PR, and reflexive operands as typified below
in (49).

(49) Object Replacement

a. Enc(Alice sees Bob) + ΔBob,Mary ≈ Enc(Alice sees Mary) [NR]
b. Enc(Alice sees Alice) + ΔAlice,Mary ≈ Enc(Alice sees Mary) [PR]
c. Enc(Alice sees herself) + ΔAlice,Mary ≈ Enc(Alice sees Mary) [Refl.]

Note that object replacement of a reflexive operand requires a bit more interpretation
than that of an NR or PR operand, since in a reflexive case we are replacing an object
whose lexical (input) identity is different from its decoded identity. To generate dis-
placement vectors for these sentences, we take as the original object the subject of the
operand, so in (49c) the reflexive herself is given the displacement vector ΔAlice,Mary since
herself would have been decoded as mary in the original expression.
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Table 5.3 shows the results of these replacements passed to the various models’
decoders. GRU models display an across-the-board failure causes entirely by their
predilection to generate reflexive outputs. The results of the object replacement arith-
metic presented to the model are never interpretable as reflexive, since we explicitly
replace the objects of reflexive and pseudo-reflexive operands with distinct objects, but
GRU models still generate reflexive outputs with a strong bias towards copying the new
object into the subject position.

SRN GRU
NR PR Refl NR PR Refl

Sent Acc 0.630 0.670 0.356 0.001 0.000 0.000
Subj Acc 0.847 0.888 0.719 0.335 0.046 0.001
Verb Acc 0.999 0.996 0.991 1.000 1.000 1.000
Obj Acc 0.738 0.737 0.474 0.620 0.950 0.997

Pred Refl 0.019 0.001 0.362 0.996 0.999 1.000

Table 5.3: Object replacement accuracies by model and operand

SRN behaviour is very reminiscent of that on subject replacement, with okay perfor-
mance on NR and PR operands caused by non-correlated but small errors in the subject
and object accuracies, and with poor performance on reflexive operands caused mostly
by errors in object accuracy. Both SRN and GRU models again display high levels of verb
accuracy, suggesting that the representation of the input’s verb is sufficiently separable
from that of the object so as to not be affected by object replacement.

Interpreting Analogical Arithmetic Results

Thepatterns observed in subject, verb, and object replacement suggest some broad trends
in how these inattentive models are representing their inputs.

1. Models (only) encode verbs analogically. The robust ability of verbs to both (a)
be targeted for replacement and (b) remain unaffected when other categories are
targeted for replacement under arithmetic surgery suggests that the representation
of the inputs verb in both SRN and GRU models encodes the same kind of linear
separable, behaviour which allows for the kinds of analogical arithmetic observed
in word embedding models. However, this performance doesn’t extend quite as
well to other categories. SRNs display decent subject and object performance on
subject and object replacement tasks (accuracies between the high seventies and
low nineties), although the overlap of errors between these two causes overall
sentence performance to become ‘just okay,’ indicating that while the encodings
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of each constituent might be decently analogical, the overall encodings of input
sentences are less so. GRU models exhibit a clear failure to represent subjects
and objects analogically, preferring instead to spuriously over-generate reflexive
forms in a way inconsistent with targeted category replacement.

2. SRNs prefer encoder resolution. On subject replacement tasks, SRN models
display a clear preference for decoding arithmetic inputs in a manner consistent
with encoder resolution of anaphora: when subjects are replaced, if an SRN does
decode the result as reflexive it will do so with the identity of the original object
preserved. However, the poor performance of SRNmodels on reflexive predicates,
as compared to their performance on non-reflexive and pseudo-reflexive ones,
indicates that the encoder’s representation of herself is not actually identical to
that of its antecedent, and is instead more tightly bound (and less separable) to the
subject’s identity than an ordinary object’s is.

3. GRUs prefer decoder resolution. On reflexive predicates undergoing subject
replacement, GRUs display a clear preference for decoding the result in a manner
consistent with decoder resolution of anaphora, where the object of the output is
identical to the new subject. However, in light of the abysmal performance of GRU
models on subject replacement involving NR and PR operands, this preference is
likely a byproduct of how GRU models over-generate reflexive outputs.

4. GRUs over-generate reflexive outputs. GRU models have an incredible strong
preference for decoding any element of their encoding space as a reflexive output
unless given strong evidence otherwise. This behaviour allows it to accidentally
attain high performance on the tasks involving decoding arithmetic results which
have a reflexive interpretation, but yields exceptionally poor performance on
when the result is not interpretable as a reflexive.

Overall, these results present strong evidence that the representations of reflexive
anaphora in SRN and GRU encoding spaces are very different. GRUs seem to have
learned to interpret reflexive inputs as an ‘elsewhere’ condition, where non-reflexive
inputs are learned properly by any points outside of some tolerance from these known
quantities results in an encoding vector that is interpreted as reflexive by the decoder.
In contrast, SRN models display no such pattern, exhibiting representations of inputs
which are not quite linear in the way that word embeddings are, but which nevertheless
do capture some degree of analogical representation.

5.3 Characterizing Encoding Space

While the exploration of how models decode inputs resulting from the kind of analogical
arithmetic which has been used to great effect in word embedding models suggests
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some interesting interpretations for how our models are making use of their hidden
representations and computational design to solve the problem of anaphora resolution,
this experimental setup suffers from some methodological weaknesses. First, it relies
upon the potentially unfounded assumption that the encoding space of these recurrent
models displays the same kind of linearity properties which permit word embeddings to
display this kind of analogical representation. As we saw, our models were not uniformly
good at decoding the results of our category-replacement surgery in the way expected
if the encoding representations were truly linear, limiting the degree to which we can
interpret the success or informative failures as truly representative of how models are
operating. Second, even in the cases of success, this experimental design privileges the
decoding of certain vectors in the encoding space (those resulting from this arithmetic)
has having a particular degree of interpretability while ignoring the rest of the encoding
space.

To ameliorate both of these worries, we next consider a weakened version of this
task which simply seeks to characterize how our models make use of their encoding
space. We know from Chapter 3 that both SRNs and GRUs are able to solve the anaphora
resolution task quite well. This involves, in part, a decoder learning to correctly interpret
a vanishingly small subset of a model’s encoding space. The decoder only learns this on
the basis of signals of a finite set of points in the encoding space representing the encoded
inputs found in the training set, and then successfully generalizing this knowledge to
the novel encodings of Alice-reflexive sentences. This success raises the question of how
decoders have learned to interpret the encoded representation of arbitrary inputs.

To answer this, consider the result of a decoder being given a random, arbitrary
encoding vector which appears to be drawn from the model’s known distribution of
input encodings. This encoding does not have a per se interpretation as an input, since it
is not the encoding of any actual sequence of input tokens, and so any decoding given by
the model cannot really be regarded as “correct” or “incorrect.” Nevertheless, examining
patterns in how models decode such random inputs may reveal trends in how they make
use of their input encodings.

To formalize this notion for a given model with parameters \ we consider the set
of all possible input encodings, and construct a normal distribution N(-\ , 2 2

\
) defined

by mean - and variance 2 2 of these encoding vectors taken independently over each
dimension. We then draw a random vector v from this distribution and give it to the
model’s decoder. If over a large sample of such vectors we observe a pattern in the
decoded output sequences, this may paint a picture of how a model’s decoder sees the
learned encoding space and hence give insight into how the model has managed to use
the encoding space to solve the anaphora resolution problem. This is particularly of
interest in the case of the GRU models which, as shown in the previous section, appear to
exhibit a strong tendency towards producing reflexive forms when the vectors passed to
the decoder do not have a reason to be reflexive, and indeed are analogically interpretable
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as being non-reflexive.
To test this, for each model we draw 10, 000 vectors uniformly at random from

a normal distribution defined by the encodings of all possible input sequences. We
then decode these vectors and characterize their outputs on the basis of reflexivity:
that is, what proportion of such arbitrary vectors are decoded to reflexive outputs?
Table 5.4 below reports the results for this experiment by model type. SRNs decode

SRN GRU Input data

Proportion Reflexive 0.165 0.987 0.069

Table 5.4: Reflexivity of decoded outputs of vectors drawn uniformly-at-random from a normal
distribution defined by the encodings of valid inputs

as reflexive outputs roughly 17% of all vectors drawn uniformly at random from the
normal distribution defined by the known encodings. GRUs, by contrast, do so 99%
of the time. For comparison, only about 7% of all input sentences (in both the training
and generalization domains) are reflexive or pseudo-reflexive. This means that both
SRN and GRU models have, to some degree, overgeneralized knowledge of reflexive
constructions in the input data by interpreting an uncharacteristically high portion of
the ‘known encoding space’ (as defined by the distribution of known input encodings)
as corresponding to semantically reflexive outputs. However, the degree to which the
models do this is qualitatively very different. While SRNs exhibit a relatively slight
predilection for decoding arbitrary inputs as reflexive, GRUs do so categorically; nearly
all arbitrary inputs to the GRU decoder are treated as reflexive. This lends credence
to the hypothesis developed in the previous section that GRU models have learned to
interpret reflexivity as an ‘elsewhere condition’ by treating inputs as reflexive by default
and carving out only a small portion of the encoding space for non-reflexive inputs
despite the fact that the vast majority of inputs seen during training are not reflexive.

5.4 Conclusion

This chapter attempts to analyize the models trained in Chapter 3 to better understand
how such models are able to solve the problem of anaphora resolution. As theorized
by G. F. Marcus (1998a) and supported experimentally by Frank, Mathis & Badecker
(2013), the task of anaphora resolution demonstrates a degree of algebraic generalization
thought to be beyond the computational capabilities of recurrent neural networks lacking
any inductive bias for this problem. That we are indeed able to solve this problem with
such models, including very simple SRNs, demands explanation.
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As noted in Chapter 2, the task of anaphora resolution requires learning a permuta-
tion group structure which treats reflexives as fixed points; we believe on this basis that
the task of anaphora resolution is harder, in a theoretical sense, than the identity problem
posed byG. F.Marcus (1998a), whichmerely requires learning equivariant functions over
the correct equivalence classes as defined by the learned permutation group structure.
Our results then demonstrate that simple recurrent networks lacking inductive biases
are at least capable of solving problems requiring an �3 level of generalization. Yet the
mechanisms by which these models manage to do so is not yet clear.

By examining the encoding space (sections 5.2 and 5.3) we tried to elucidate these
mechanisms. The results we obtained are unclear. The results of the encoding space
analysis do clearly show that GRU models have a strong inclination to decode encoding
vectors as reflexive unless given enough of a reason to not do so; this is suggestive of
a decoder which views the encoding space as a sea of reflexivity, where inputs have by
default only a separable verb and subject-object interpretation. Inputs required to have a
different subject and object (i.e., excluding reflexive and pseudo-reflexive inputs) are then
placed in the encoding space in islands of interpretable non-reflexivity. GRUs, it seems,
have learned reflexivity as an elsewhere condition; a clever solution to the problem,
although one which poses challenges for its interpretability in the context of how human
language learners view the challenge of sentence interpretation. By analogy, one can
imaging an experimental setup where native speakers are played a recording of various
input sentences with white noise masking out the object, and are then asked to provide
their guess as to what the object of the sentence was. It seems highly unlikely that such
a test would find speakers likely to interpret such inputs as reflexive on a majority of
occasions, suggesting a wholely different mechanism of interpretation than what we
observe in GRU models.2

That GRU models learn this as an elsewhere condition is likewise notable for the
relative paucity of reflexive data in the training domain: only XX% of all training inputs
were reflexive, indicating that GRU models managed to generalize (and indeed, perhaps
overgeneralize) this rule for reflexive interpretation on the basis of very little support.

Despite this categorical treatment, our attempts at providing a constructive model
for how the encoder is representing input sequences in a manner consistent with the
observed generalization only yielded further questions. The various hypothesis tested
for tensor-product representations of the encoding space all seemed to further give
credence to the notion that GRUs have a reflexive-by-default encoding structure, but
none seem to adequately characterize the representation of the encoding space.

2Of course, the models studied here are clearly not proxies for general human cognition, and so this
failure is of course expected. Nevertheless, the patterns observed do clearly indicate that the mechanism by
which these models manage to solve the problem of anaphora resolution is qualitatively distinct from that
employed in human understanding of this phenomena.
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Pre-<EOS> Arithmetic

Prior to embedding and subsequent encoding, all input sequences to themodels discussed
here undergo a process called tokenization. In larger models like BERT (Devlin et al.
2019), tokenization is used in part to break up morphologically complex words into
smaller chunks. Our models developed here do not make use of this, but the process
of tokenization does involve the appending of a start-of-sequence <SOS> token to the
beginning, and an end-of-sequence <EOS> token to the end, of each sequence, as shown
below in (50).

(50) Alice sees herself → <SOS> alice sees herself <EOS>

While these extra tokens do not have their own interpretations in the output domain3,
their presence in the input sequence does pose an additional way to examine how models
handle category-replacement surgery. Since each input sequence ends with the same
<EOS> token, we can optionally perform the arithmetic immediately after the encoder
has processed the object token in the operand, before the it has had a chance to encoder
the <EOS> token, as below in (51), where Δ∗ denotes a displacement vector which has
likewise been computer prior to the <EOS> token in each constituent sequence.

(51) ℎ9−1 = Enc(<SOS> alice sees herself) + Δ∗
Alice,Mary

This encoding vector is then taken as the hidden input to the encoder when presented
with the <EOS> token, as in (52) below, and this encoding is what is passed to the decoder.

(52) ℎ9 = Enc(<EOS>, ℎ9−1)
The computation of category-replacement surgery prior to the <EOS> token may

change how a model decodes these analogical expressions.

Sequence-to-sequence design as an inductive bias for generalization

The results of Chapter 3 demonstrate conclusively that simple recurrent networks are
able to learn problems requiring an �3 degree of algebraic generalization. One notable
distinction between the results shown here and previous negative results obtained in
G. F. Marcus (1998a) and subsequently in Frank & Petty (2020) is that we use recurrent
networks in a sequence-to-sequence context (Sutskever, Vinyals & Le 2014) rather than a
language modelling context. A strong interpretation of this disparity (i.e., where we draw
the conclusion that problems of �2- and �3-generalization are unlearnable by simple
recurrent models in a language-modeling context, whereas �1-generalization tasks like
those of Kim & Smolensky (2021) and Chapter 6 are certainly learnable by language

3We do make use of the <EOS> token during decoding to determine when a decoder has finished
decoding an input.
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models such as BERT) would suggest that the sequence-to-sequence design of the models
developed in Chapter 3 constitutes an inductive bias for this kind of generalization, one
which enables recurrent networks to solve problemswhich require persisting knowledge
of a novel input’s identity.

Why this should be the case is unclear. Attentionmechanisms provide a clear example
of an inductive bias geared to solve such problems at both an intuitive (the presence
of a look-back mechanism allows a model to examine the lexical content/identity of a
previous token to condition output on this identity) and formal (see the work of Goyal
& Bengio (2021) connecting attention mechanisms to the learning of group equivariant
functions) level. Contrastingly, there is little intuitive connection between the persistence
of a token’s identity between the input and output domains and the problem design
of separating the input encoding from the output decoding by collapsing the input
representation to a single state vector passed from encoder to decoder. While such a
design clearly affords a benefit to models seeking to separate the length of the input and
output representations (Sutskever, Vinyals & Le 2014), what connection this has to the
representation of generalization is unclear. If it is the case that sequence-to-sequence
design constitutes such an inductive bias, it would be of great interest to understand
what connection this model design has to problems of requiring equivariance.

Testing Explicit Hypothesis for Input Representation

While the analysis done here is illustrative of broader patterns in how SRN and GRU
models make use of their embedding space and sequence-to-sequence design to solve
anaphora resolution, these methods are limited in their explanatory capabilities since
they provide no testable model for how these models are actually representing their
inputs in the embedding space. Rather, we merely are observing how the decoder
interprets parts of the encoding space and using this to draw conclusions about how the
encoder is representing information. If we could provide a constructive analysis of how
ourmodels are representing inputs in the encoding space, we can drawbetter conclusions
about the mechanisms by which models learn this representation and understand the
limitations to models’ ability to solve similar problems in generality.

One method for providing such explicit and testable hypothesis about the represen-
tations of input data in a model’s encoding space follows from the work of Smolensky
(1990), which argues that the representation of inputs to connectionist models can be
analyzed in terms of a tensor product between roles which are bound to semantically-
contentful fillers. This representation provides a link between the symbolic structures
which characterize linguistic data, including the data presented herein, and the learned
continuous spaces of connectionist systems. As an example, consider the following
filler-role paradigm for our anaphora resolution task, where role ⊗ filler is taken to



Chapter 5. Alice’s Adventures in Reflexiveland 67

mean the tensor product of a role and filler pair which have each been embedded into
some vector space.

(53) Alice sees herself → subj ⊗ alice + verb ⊗ see + obj ⊗ self

For a network to represent it’s inputs in such a fashion means that it has implicitly
learned to separate portions of sequences in its input domain and model the binding
of the fillers to their respective roles and combining these representations to produce a
representation for the broader input.

The connection between this tensor-product representation and the requirements
for generalizational structure discussed in Gordon et al. (2019) and elaborated upon in
Chapter 2 are clear when we consider each role as the identity of a learned equivalence
class and the various fillers as the members of the underlying dataset whose orbits (under
action by the learned symmetry structure) correspond to these classes. One important
clarification, however, is that the fillers of these tensor-product representations need not
correspond uniquely to particular tokens in the input domain; rather, they need only
represent the interpretational semantics of the input in some well-defined way. Thus,
for instance, it is perfectly reasonably to imagine a tensor-product representation of our
anaphora resolution task has having a see-herself filler even though this is not a unique
token present in the input of Alice sees herself which would correspond to this filler.

The ability for recurrent neural networks in a sequence-to-sequence context to con-
struct such tensor-product representations is not merely theoretical. McCoy et al. (2020)
demonstrates that such recurrent models in fact implicitly capture tensor-product rep-
resentations by constructing tensor-product decomposition networks (TPDNs) which
are trained to model a recurrent model’s encoder on the basis of stipulated filler-role
hypothesis and then using these TPDNs as substitutes for the model’s original encoder.
Successfully training a TPDN to model an encoder’s input representations to the degree
that the TPDN can be substituted for the original encoder in the sequence-to-sequence
task then provides a constructive characterization for how such a model is representing
inputs in its embedding space.

We believe a similar technique could be employed here to test hypothesis about how
our SRN and GRU models are representing reflexive anaphora in a manner consistent
with the generalization behavior observed by considering candidate representations
whose decomposition could extend to an unseen subject-reflexive combination and
then using a TPDN to model the encoding spaces of the models under this candidate
representation.4

4As an example, the filler-role paradigm illustrated in (53) is compatible with the generalizations
observed because the proposed representation for a withheld sentence like Alice sees herself (→ subj ⊗
alice + verb ⊗ see + obj ⊗ self) is separable into constituent filler-role bindings which are each learned
separately in training; but consider an “all-in-one” representation like that of (54) below.
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Extending Analysis to More Complicated Models

We limited our analysis to only inattentive SRN and GRU models, since it is these
networks whose successful performance on the anaphora resolution task is most surpris-
ing. Nevertheless, it is likewise of interest to understand the mechanisms employed by
more complicated models like inattentive LSTMs, the attentive variants of all recurrent
architectures used, and transformers, to solve this problem.

Likewise, extending this analysis to the additional experiments mentioned in Chap-
ter 3would likewise yield insight into howvarying the task difficulty by reducing training
support affects model performance. We know empirically that the simplest networks
surveyed, inattentive SRNs, exhibit a strong degradation of generalization when the
training support of reflexive sentences is progressively decreased, yet the GRU models
used showed a remarkable resilience to this increased difficulty, with some models at-
taining near-ceiling performance when the training data contained very little evidence
of feminine-reflexive sentences. This disparity, and the fact that inattentive GRUs are
able to solve this increasingly-difficult problem at all, demands an explanation. By char-
acterizing how all models represent their inputs in encoding space, we can provide a
more thorough comparison of how such models manage to solve problems requiring
algebraic generalization and perhaps provide a qualitative comparison of how model
architecture relates to the learnability of problems of different classes of generalization
complexity.

(54) Alice sees Bob → sent ⊗ alice-see-bob

While assigning a unique filler to each sentence would successfully model the inputs of the training domain,
it is not possible for this representation to be learned in such a way so as to extend to the withheld data,
since these bindings (sent ⊗ alice-see-herself for Alice sees herself ) would never be attested in training.
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Chapter 6

Do Language Models Learn
Position-Role Mappings?

6.1 Introduction

During language learning, children come to know what thematic relations hold between
verbs and their syntactic arguments. In a prepositional dative (PD) construction like
(55a), the first object is assigned the theme role, while the second (prepositional) object
is assigned recipient. In contrast, in double object (DO) constructions like (55b), it is
the first object that is assigned recipient, while the second is assigned theme.

(55) a. I gave [the ball] to [the dog].
b. I gave [the dog] [the ball].

When such sentences are passivized, the position-role mapping changes yet again: for
PDs, the subject of the sentence now takes the role of theme, while for DOs, the subject
takes the role of recipient.

(56) a. [The ball] was given to [the dog].
b. [The dog] was given [the ball].

Such patterns raise a learning problem: how do learners come to know which thematic
role to assign to a given syntactic argument? We might, for instance, expect that a learner
who has acquired the position-role mapping for a DO sentence would generalize her
knowledge of the considerably more frequent passives of transitive verbs to passives
of DO sentences. In passives of sentences with transitive verbs, it is the theme role, as
opposed to the recipient, that is assigned to the passive subject.

(57) a. I threw [the ball].
b. [The ball] was thrown.

70
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Since themes are the subjects of passives in these simpler structures, a learner might be
tempted to (erroneously) accept examples like the following:

(58) * [The ball] was given [the dog].

Strikingly, this pattern of raising the theme but not the recipient in DO sentences is
cross-linguistically unattested.1 Such a gap calls out for explanation in terms of the
process of language learning.

One way a learner could avoid such a faulty generalization would be if the primary
linguistic data included evidence that directed a learner away from it. Indeed, given
sufficient evidence about the thematic properties of the arguments of verbs in both active
and passive DO structures, a learnermight eschew any generalization between active and
passive entirely, favoring instead a structurally specific mapping for each sentence type.
Such an approach would however fail to capture the systematicity of the relationship
across argument structure alternations like dative shift in (55) and different syntactic
variants like the voice alternations between active and passive. Further, if generalization
is eschewed entirely, we might expect the properties of individual verbs to be learned
separately (e.g., Tomasello 1992). While verbs exhibit well-known variability in their
participation in argument structure alternations (e.g., give participates in dative shift
but donate does not), the relationship between the active and passive forms is entirely
regular: if a verb can appear in an active DO sentence, it can also appear in a passivized
DO sentence, with thematic properties that are entirely predictable. Verb- and structure-
specific learning would not provide an account of such systematicity and would not
support generalization to forms that are sparsely represented in the learning data.

An alternative approach, widely adopted in work in generative grammar, posits
the presence of an innate language-specific learning bias that constrains position-role
mappings. For example, in work on the acquisition of argument structure, whether
rooted in semantic bootstrapping (Pinker 1989) or syntactic bootstrapping (Gleitman
1990), the child is assumed to know the relationship between the thematic roles of events
of transfer on the one hand, and syntactic positions in a double object or prepositional
dative sentence on the other. Similarly, syntactic theories derive the fact that passiviza-
tion of a DO structure necessarily allows the promotion of the the argument occupying
the highest (indirect) object to subject position from properties of the syntactic repre-
sentation of such constructions (cf. Alsina (1996), McGinnis (2002), Holmberg, Sheehan
& van der Wal (2019) inter alia).

A final possible account of this learning problem, which constitutes a middle ground
1Bresnan & Moshi (1990) (and much subsequent work) explore languages like Kichega which allow

“symmetric” passives, where either argument in a DO construction can be raised to subject position. Certain
English dialects also permit symmetric passives (Woolford 1993). Such languages and dialects still raise the
learning problem we discuss here, though in a modified form. We leave the exploration of this variation for
the future.



Chapter 6. Do Language Models Learn Position-Role Mappings? 72

between these two approaches, would attempt to derive constraints on the acquisition
of position-role mappings from the combination of domain-general learning biases and
the evidence present in the learning data. Such an approach to language learning is now
widespread in work in NLP, where contemporary language models have little in the way
of hard-wired linguistic structure, but the linguistic generalizations they learn are indeed
guided by the properties of their architectures and the data to which they are exposed
(McCoy, Frank & Linzen 2020, Min et al. 2020, Mulligan, Frank & Linzen 2021). Most
often these models are evaluated on the basis of their performance on some extrinsic
task like question answering or natural language inference (NLI), and such results do
not shed light directly on the nature of linguistic generalizations that they encode. Here,
we consider the linguistic generalization question more directly by studying the degree
to which a widely-used language model, the Bidirectional Encoder Representations
from Transformers model (BERT, Devlin et al. (2019)), exhibits knowledge of position-
role mappings across variations in argument structure, syntactic structure, and lexical
identity. BERT is a general purpose neural network architecture that composes multiple
Transformer layers (Vaswani et al. 2017) each with a bidirectional attention mechanism.
It is trained to perform a masked language modeling task (i.e., to predict the identity
of masked tokens within a sentence) using a data set consisting of the 800M words of
the BooksCorpus and the 2,500M words of English Wikipedia.2 Quite clearly, BERT
lacks explicit linguistic bias on what can constitute possible position-role mappings
and how these mappings can vary across structures. As a result, any knowledge in this
domain that it demonstrates must derive from the combination of its training data and
domain-general biases that stem from the transformer architecture.

6.2 Experiment 1: Probing Position-Role Mappings
Through Distributional Similarity

Our first experiment tests BERT’s knowledge of the position-role mappings for the
theme and recipient arguments of ditransitive predicates. To do this, we make use
of constraints imposed by the selectional restrictions of verbs: the limitations that a
verb imposes on the content of its arguments. Though such restrictions are verb specific
(e.g., a verb like drink will take different direct objects than a verb like read), there are
nonetheless general distributional patterns that can be associated with more coarse-
grained thematic roles. If a verb assigns the role like agent or recipient to an argument,
we would expect the distribution of that argument’s head nouns to favor animate nouns.

2BERT’s training regimen also includes a next sentence prediction task, in which it must be determined
whether or not two sentences were originally adjacent to one another in the source text. Subsequent
work with a BERT-variant called RoBERTa (Liu et al. 2019) has found this component of training to be
unnecessary to its success.
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In contrast, for arguments assigned the theme role, we might expect a higher proportion
of inanimates (or at least the absence of a strong animacy preference).

Because BERT is trained to perform masked language modeling, it can be used to
extract distributional predictions directly. For this experiment, then, we presented BERT
with sentences containing ditransitive predicates with the head nouns of the theme and
recipient arguments masked out:

(59) Alice sent the [MASK] a [MASK] .

If the predicted distributions of nouns inmultiple argument positions of a single sentence,
say an active double object example, are distinct, this provides a first bit of evidence of
BERT’s knowledge of the distinctive properties of these arguments. We use this approach
to systematically assess BERTs knowledge of selectional restrictions by performing two
calculations. First, for each positions predicted distribution, we compare the total
probability assigned to a small set of (frequent) animate nouns �with the probability
assigned to a small set of (frequent) inanimate nouns � .3 We call the result the animacy
confidence (aconf ) of position E7:

aconf (E7) = log

∑
D∈� >(E7 = D)∑
D′∈� >(E7 = D′)

By computing mean aconf across comparable positions in a set of sentences of the same
type, we can get a measure of the model’s overall preference for animate nouns in a
given position. Reliable differences between means in different positions will point to a
representation of the different roles. A more interesting question that aconf scores allow
us to ask is the degree to which they are consistent across different syntactic realizations
of the same argument: do themes and recipients in double object structures have the
same profile as themes and recipients in prepositional datives? And does the passivized
version of each structure show the right pattern of aconf scores for the corresponding
argument positions?

One limitation of aconf scores is their dependence on the specific sets of nouns �
and � we use to evaluate the preference. To assess the distribution in a more neutral
fashion, we also compute the entropy of position E7.

� (E7) = −
∑
D

>(E7 = D) log >(E7 = D)

Higher entropy is associated with a more diffuse set of predictions, i.e., cases where
the language model is less certain about the identity of the words that can fill a posi-

3We use the following sets of nouns. Animate: person, man, woman, student, teacher, king, queen,
prince, princess, writer, author, builder, driver, human, dog, bird, dancer, player, angel, actor, actress, singer,
director, bee, friend, wolf, lion, scholar, pirate, spirit, fox. Inanimate: apple, book, chair, table, phone, shoe,
water, earth, land, light, sun, moon, plate, eye, ear, branch, tree, time, energy, bottle, can, mask, leaf, tile,
couch, button, box, cap, wire, paper.
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tion. Different thematic roles impose varying degrees of selectivity on their associated
arguments, and consequently, entropy measures can provide us with a diagnostic of
such selectivity that we can compare across arguments of the same role in different
syntactic constructions and voices.4 Using the tregex tool (Levy & Andrew 2006), we
extracted sentences from the Wall Street Journal portion of the Penn Treebank (PTB,
Marcus, Santorini & Marcinkiewicz (1993)) containing ditransitive predicates, using
both double object and prepositional dative structures, in both active and passive voice.
For each structure-voice pairing, we selected 50 sentences, and masked the head noun
of the theme and recipient arguments. We evaluated these data on the BERT model.
In order to examine what effect, if any, variations in model architecture and training
regimen had on performance, we also examined the behavior of two recently developed
variants, RoBERTa (Liu et al. 2019) and DistilBERT (Sanh et al. 2020). RoBERTa utilizes
the same architecture as BERT while modifying the pretraining regimen. DistilBERT, by
contrast, uses a different, smaller architecture with roughly 40% fewer parameters, while
retaining high levels of performance. For space considerations, we only report results
from the BERT model, but results were consistent between all three model architectures.
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Figure 6.1: Animacy confidence of theme- and recipient-expecting positions in active and passive
double object sentences (left) and prepositional dative sentences (right) from the Penn Treebank.
Vertical lines indicate mean values.

Both animacy confidence (Figure 6.1) and entropy (Figure 6.2) show consistent
differences between theme-expecting and recipient-expecting positions across double
object and prepositional dative constructions, aswell as across active and passive variants.

4One potential pitfall with this approach stems from the variability in the selectivity associated with
individual roles (Resnik 1996). For example, while some transitive verbs like ‘drink’ restrict their theme
arguments to words denoting liquids, others like ‘see’ are much less limiting on their themes. Nonetheless,
our goal here is exploring the possibility that entropy measures support systematic differences at the
thematic role level.
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In each case, the mean animacy confidence is negative for themes (meaning a preference
for inanimate nouns) and positive for recipients (meaning a preference for animates),
and the mean entropy value is higher for recipients than it is for themes. The difference
in means between theme- and recipient-positions is statistically significant under a
two-sided Welch’s unequal variances B-test with > < .001 for animacy confidence and
> < 0.05 for entropy.

This consistently distinct treatment of theme and recipient arguments across dif-
ferent argument structures and across active and passive constructions is suggestive
of the fact that pretrained language models have knowledge of how thematic relations
are realized across different syntactic structures in ditransitive constructions. This is
notable not only for the sensitivity it requires to grammatical context but also because
the alternation between active and passive voice in double object constructions exhibits
the unusual property discussed above, where the recipient which is promoted to subject
position under passivization, rather than the theme. It appears then that language mod-
els trained on massive corpora are not only capable of learning role restrictions across
syntactic contexts but that they are able to put aside widely supported generalizations in
specific cases, in the absence of an explicit bias to do so.
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Figure 6.2: Entropy of theme- and recipient-expecting positions in active and passive double ob-
ject sentences (left) and prepositional dative sentences (right) from the Penn Treebank. Vertical
lines indicate mean values.

6.3 Experiment 2: Syntactic and Structural Generalization

The results of Experiment 1 show that BERT (and its variants) exhibits latent knowledge
of the connection between argument structure and thematic role across voice (that is, in
both active and passive constructions) in ditransitive sentences. Yet there is no guarantee
that the model has any shared knowledge connecting the alternative structures (DO or
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PD) or the active and passive constructions. For example, does themodel understand that
the recipient position in an active DO sentence (the indirect object) corresponds to the
recipient position in the passive one (the subject), or has it simply learned the thematic
role/argument structure correspondences in these two sentence types independently?

To test whether the knowledge is shared or independent, we adapt the method
proposed by Kim & Smolensky (2021) to diagnose linguistic generalization in language
models: fine-tuning an already trained language model on sentences that include novel
words that are associated with some linguistic property. During fine tuning, these words
are only presented to the model in a single syntactic context. We then test the model’s
ability to generalize its knowledge of these novel words to structures in which they had
not been seen during fine-tuning.

Our adaptation of this methodology involves the use of novel nouns that occur
uniquely in positions associated with specific thematic roles: thax as a theme and ricket
as a goal. We take our three BERT variants and fine-tune separate models using one or
two paradigms: DO ‘give’ and PD ‘give’. The DO paradigm contains hand-constructed
sentences containing onlyDOexamples, and likewise for the PDparadigm.5 Example (60)
below gives the full set of tuning data for the DO ‘give’ paradigm.

(60) a. I gave the ricket a box.
b. I gave a ricket the camera.
c. I gave the teacher a thax.
d. I gave a student the thax.

The intuition behind this set-up is similar to what we explored in Experiment 1: the
semantic classes of nouns appropriate for the different thematic roles differ in systematic
ways, and such selectivity will vary systematically across the different position-role
mappings. Our expectation is that fine-tuning will lead the language model to identify
the relevant properties of these nouns. If the language model represents position-role
mappings in a way that generalizes across argument structure alternations and variations
in syntactic structure, we should see generalization of its predictions of the novel items
to other syntactic structures.

Following Kim & Smolensky (2021), we freeze all of the model weights prior to fine-
tuning except for the word embeddings of two unused items in the model’s vocabulary.6

We then fine-tune the model on a minimal synthetic dataset such as the one in (60) until
the predicted log probability of either of the novel tokens in a masked position begins to

5Importantly, each training sentence contains only a single novel token, either ricket or thax. These
novel tokens never appear together in the same training example to prevent the model from learning any
association between them. Thus the model will never learn that if it sees ricket in one position, it should
expect thax in another.

6BERT-variant models utilize shared input and output embeddings, so the model is able to learn to
predict novel words even though all weights except for two input embeddings have been frozen.
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sharply decrease. We use this early-stopping criterion in an attempt to avoid the model
becoming overly confident in the prediction of the novel tokens at the expense of the rest
of its vocabulary. We use unused tokens in BERT’s vocabulary to represent the nonce
words.

We evaluated the tuned models’ performance on a number of synthetic test sets
containingmasked theme-expecting and recipient-expecting positions, as in (61) below.
Examples in these sets varied with respect to the choice of determiners, non-masked
nouns, syntactic frame (DO vs. PD), voice (active vs. passive), and verb. In each masked
position, we compute the log of the probability ratio (so-called log odds) of the two novel
words; if the log-odds of the novel thax tokens are higher than those of the ricket tokens
in theme-expecting positions, and vice-versa for the recipient-expecting positions, we
infer that the model has learned to distinguish the distributions of these nonce words.

(61) a. The teacher gave a [MASK] the [MASK].
b. A [MASK] was given the [MASK].

(62) a. A teacher gave the [MASK] to the [MASK].
b. The [MASK] was given to the [MASK].

(63) a. The teacher sent a [MASK] a [MASK].
b. A [MASK] was sent a [MASK].

(64) a. The teacher sent the [MASK] to a [MASK].
b. The [MASK] was sent to a [MASK].

This regimen of training and evaluation allows us to measure a model’s proclivity for
generalization in syntactic (voice) and structural (frame) contexts. Table 6.1 summarizes
the performance of our 3 BERT-variants models by reporting the percentage of novel
tokens which are correctly predicted in evaluation sentences across voice and frame.
DO and PD rows in the table correspond to different training regimens.

Voice Generalization

Voice generalization measures a model’s ability to infer the placement of the novel thax
and ricket tokens in a passive sentence for a model trained only on active sentences, or
vice-versa. We know from Experiment 1 that BERT performs analogously (as measured
by entropy and animacy confidence) across corresponding positions in active and passive
constructions. By testing BERT on novel token prediction, we can determine whether
knowing how to place tokens in one construction suffices to know where to place tokens
in another (in essence, whether BERT can make use of this knowledge of distributional
similarity). Our results, reported in Table 6.1, show that BERT models do indeed exhibit
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Double Object Prepositional Dative
Active Passive Active Passive

th. re. th. re. th. re. th. re.

BERT
DO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PD 100.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0

RoBERTa
DO 85.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PD 78.8 82.5 100.0 100.0 100.0 100.0 100.0 100.0

DistilBERT
DO 90.0 98.8 97.5 100.0 97.5 100.0 80.0 100.0
PD 100.0 62.5 100.0 100.0 100.0 93.8 100.0 100.0

Table 6.1: Performance of various models on placing novel tokens (thax or ricket) in the correct
position (theme- or recipient-expecting) within active and passive sentences in DO and PD
frames. Columns represent evaluation data while rows represent training contexts. Shaded cells
indicate in-domain evaluation results; unshaded cells report generalization results. All training
and evaluation sets reported here used a single verb, ‘give’. Each reported value is an average over
10 different model runs.

robust voice generalization and are able to accurately predict token placement in passive
sentences when trained on corresponding active sentences.7

All models evaluated showed equal or improved performance on the passive variants
of their active training data. Indeed, all models achieved nearly perfect performance on
the passive complements to their active training data. This generalization is supported
across frames as well, where models trained on active DO sentences perform well on
passive PD sentences.

Frame Generalization

Frame generalization measures a model’s ability to infer the distribution of novel tokens
on sentences whose frame (DO versus PD) differs from those in the model’s training data.
We trained models on DO and PD data separately, allowing us to test generalization
from DO to PD frames and from PD to DO frames. Just as with voice generalization,
we find that all models exhibit good generalization between frames, although there is
some variance in the directionality of this success. Models trained on DO data exhibited

7Throughout, ‘corresponding’ means that we’ve held other relevant parameters constant, so we might
train on active DO ‘give’ sentences and test on passive DO ‘give’ sentences. Furthermore, the active and
passive sentences correspond to each other as they do, for example, in (61).
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excellent generalization to PD data, attaining at- or near-ceiling performance. Models
trained on PD data perform slightly less well, though still substantially above chance, on
DO data.

Distributional Restrictions on Roles

In all but three cases in Table 6.1, we find that models accurately predict ricket in re­
cipient positions more often than they accurately predict thax in theme positions.
This pattern holds across models, frames, voice contexts, and training regimes. This is
consistent with our results from Experiment 1, where we found that BERT, RoBERTa,
and DistilBERT models had higher animacy confidence for recipient positions than
for theme positions. Thus, the higher animacy confidence associated with recipient
positions travels together with higher accuracy. Under our hypothesis, this is no acci-
dent: the more restricted distribution of words that can appear in recipient positions
(namely, words in recipient positions aremore likely to be animate thanwords in theme
positions) supports the models’ ability to predict the correct token in these positions.

Lexical Generalization

Lexical generalization measures a model’s ability to predict novel token placement in
sentences whose ditransitive verb differs from the verb in the model’s tuning data. Here,
we fine-tune models on ‘give’ sentences and evaluate them sentences with other ditran-
sitives, namely ‘teach’, ‘send’, and ‘tell’. We have carried out this analysis on the best
performing of our models, namely RoBERTa. Our results, shown in Tables 6.2 to 6.4,
show that RoBERTa’s performance on lexical generalization tasks is lexically condi-
tioned, with high performance on some ditransitive verbs, but quite poor performance
on others. Furthermore, the frames on which models fail to generalize are not consistent
between target verbs. Test data involving the ditransitive verb ‘teach’, for instance, is
associated with reasonably good performance on both DO and PD constructions in both
active and passive forms, regardless of training context. In contrast, models evaluated
on data involving ‘send’ as the ditransitive verb show reasonably high performance on
prepositional dative constructions (in both active and passive forms), but show much
worse performance on double object constructions (of both voices), regardless of train-
ing context. Finally, the opposite pattern holds for test data involving ‘tell’, where the
prepositional dative constructions yield worse results than the double object ones.

In all such cases, it is notable that the same pattern of performance holds vis-à-vis
the accuracy of the models placing ricket in a recipient context relative to their placing
thax in a theme context. Indeed, this effect is pronounced in cases where the models
exhibit a stark failure of generalization, as in the ‘tell’ frames of Table 6.4, where the
models’ performance in recipient-expecting positions was near ceiling while their
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performance on theme-expecting positions was far lower. In all cases observed, a failure
of generalization for the whole frame is due almost entirely to a failure to place thax
tokens in theme-expecting positions.

Compared to in-domain test cases, evaluation on sentences with novel verbs shows
a greater distinction in accuracy between recipient- and theme-expecting positions,
with mean accuracy for theme-expecting positions substantially lessened while that of
recipient-expecting positions remained roughly at ceiling. This further highlights the
impact of the distributional restrictions placed on the recipient position as observed in
Experiment 1 by measuring relative entropy and animacy confidence.

One natural place to look as the source of these lexical distinctions is in the training
data. If the model’s experience with different verbs during training reveals divergent
distributional patterns, we might expect the network to generalize less well. Because
of the infeasibility of assessing the distributions in the BERT or RoBERTa training
data, we instead explored the relative abundance of the different structures in parsed
PTB data.8 Though the syntactic annotation provided in the PTB does not allow us
to perfectly identify double object structures (argument and adverbial NPs are parsed
identically), the resulting patterns are robust enough to allow us to identify interesting
patterns for the verbs ‘send’ and ‘tell’: ‘send’ appears far more often in prepositional
dative constructions than in double object constructions, while the opposite is true for
‘tell’ (which occurs almost never in the prepositional dative construction). The verb
‘teach’ shows a strong bias towards the double object construction, but it is considerably
rarer than the other three verbs. This suggests that its corpus statistics are less reliable
indicators of the training data used for the language models and therefore not predictive
of lexical generalization performance. If taken as a proxy for the relative abundance of
these forms in the training corpus for the language models, this could suggest that the
points of failure for lexical generalization tasks are correlated with the frequency with
which dative verbs appear in the various construction types in the training data.

We find that pretrained language models exhibit robust generalization across voice
and construction type in ditransitive constructions when introducing novel theme-
and recipient-like tokens into their vocabularies. This ability holds across model type,
though we do find evidence that performance is lexically conditioned by the ditransitive
verb used during the fine-tuning process. This suggests that while the knowledge of the
relationship between syntactic position and thematic role is not learned wholly indepen-
dently for each construction type, it is dependent on the identity of the ditransitive verb
involved.

8We recognize that the PTB data is not identically distributed to the BooksCorpus and Wikipedia
that forms the BERT training set, we expect that the usages of different structures would be reasonably
consistent across them, at least at the coarse-grained level we are considering here.
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Double Object Prepositional Dative
Active Passive Active Passive

th. re. th. re. th. re. th. re.

RoBERTa
DO 97.5 100.0 100.0 100.0 97.5 98.8 97.5 100.0
PD 92.5 100.0 90.0 100.0 90.0 100.0 95.0 100.0

Table 6.2: Lexical generalization to ‘teach’ frames. Columns represent evaluation data while rows
represent training contexts. All models were trained on active ‘give’ sentences. Each reported
value is an average over 10 different model runs.

Double Object Prepositional Dative
Active Passive Active Passive

th. re. th. re. th. re. th. re.

RoBERTa
DO 77.5 100.0 77.5 95.0 91.3 98.8 90.0 100.0
PD 71.3 91.25 72.5 92.5 100.0 100.0 97.5 100.0

Table 6.3: Lexical generalization to ‘send’ frames. Columns represent evaluation data while rows
represent training contexts. All models were trained on active ‘give’ sentences. Each reported
value is an average over 10 different model runs.

Double Object Prepositional Dative
Active Passive Active Passive

th. re. th. re. th. re. th. re.

RoBERTa
DO 78.5 100.0 97.5 100.0 23.8 98.8 45.0 92.5
PD 62.5 100.0 65.0 100.0 26.3 100.0 15.0 100.0

Table 6.4: Lexical generalization to ‘tell’ frames. Columns represent evaluation data while rows
represent training contexts. All models were trained on active ‘give’ sentences. Each reported
value is an average over 10 different model runs.
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6.4 Conclusion

We began by raising the question of how children might acquire position-role mappings,
and outlined three possibilities: verb- and syntax-specific learning, innate language-
specific biases, and a combination of domain-general biases and evidence in their linguis-
tic input. We have demonstrated here that the third option is a feasible explanation: three
languagemodels that contain no explicit linguistic biases regarding possible position-role
mappings nevertheless successfully demonstrate knowledge of position-role mappings
that largely generalizes across verbs and syntactic structures. The limitations we find do
not invalidate this larger conclusion, though they do suggest the importance of further
research in this area.

We have shown that pretrained language models (BERT, RoBERTa, and DistilBERT)
recognize distributional differences between theme- and recipient-expecting positions.
This distinction is stable across syntactic (i.e., voice) and structural (i.e., direct object vs
prepositional dative) alternations, showing that these well-performing pretrained lan-
guage models appear to have knowledge of position-role mappings which are preserved
between construction type and voice alternations in ditransitive constructions. We have
further shown that this knowledge is, in some sense, ‘shared’ across syntactic and struc-
tural alternations. Models that are fine-tuned to learn the novel thax (theme-like) and
ricket (recipient-like) tokens within a single paradigm (e.g., active prepositional dative
constructions or active double object constructions) make robust generalizations across
voice and construction alternations.

We do however find limitations in the performance of these models with respect
to lexical generalization. When the model is exposed to a novel token as the argument
of one verb, it generalizes this knowledge to other verbs in an inconsistent fashion.
For instance, models trained on ‘give’-containing sentences poorly generalize their
knowledge of theme arguments in prepositional dative structures containing the verb
‘tell’. Nonetheless, even in such case, models perform well at generalizing knowledge
of recipient arguments. This fits with our earlier observation that recipient positions
have higher animacy confidence than theme positions do, so that a model’s knowledge
that a novel token has an animate interpretation will license generalization.

This conclusion suggests a hypothesis concerning how the model may be succeeding
in our novel word learning experiments, namely by associating the novel word with a
portion of the word embedding space that is appropriate for the selectional restrictions
of the verb on which it is trained (i.e., ‘give’). This is consistent with the network having
learned a distinct and redundant representation of the selectional restrictions across
syntactic contexts, so long as they are all characterized in terms of the abstract lexical
semantic space represented through the word embeddings. In on-going work, we are
exploring other experimental methods to identify knowledge that cuts across structures.

Further directions for work include assessing whether the patterns of generaliza-
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tion we have found here also hold within a broader array of syntactic (e.g., raising)
and structural (e.g., causative-inchoative) alternations, as well as better elucidating the
computational mechanism by which these models are able to make these kinds of gen-
eralizations. We want to better understand whether or not the generalized knowledge
observed in these models is derived from the computational mechanisms internal to the
language model (i.e., is knowledge of a task like passivisation a property of how BERT
encodes sentences and operates on them as data is passed through the model) or is it
merely a learned property of the input and output embeddings (i.e., has BERT learned
that ‘things which are valid subjects of passive sentences’ should cluster in some subspace
of the embedding space, and that ‘things which are the direct object of prepositional
dative constructions or the indirect object of ditransitive constructions’ should cluster
in another subspace, and that nouns with the appropriate distribution are embedded in
such a way so as to satisfy both constraints simultaneously). Essentially, this questions
probes the degree to which BERT’s displayed success at these lexical generalization tasks
is a result of some shared computational knowledge of how language works, or whether
it is merely a consequence of the learned geometry of its embedding space.



Chapter 7

Conclusion

This thesis takes a small step towards elucidating the connection between the complexity
of a generalization task and the learnability of this task by artificial neural networks. We
began by introducing the various analyses of generalization that have been employed to
describe problems arising in the learning of linguistic data. These descriptions provide
very intuitive accounts of the knowledge required to represent language data in a way
which generalizes to unseen constructions, but their lack of formal definition precludes
a clear comparison of the problems they describe. We adopt the analytical framework of
Gordon et al. (2019) and others to connect the notion of generalization to the learning
of group-equivariant functions which encode symmetries in training data. Originally
used to formalize the notion of compositional generalization (Lake 2019), we extend this
formalize to reify G. F. Marcus (1998a)’s notion of algebraic generalization, providing
a common formal description for the problems described in these notions. We then
show how algebraic generalization describes a subset of the larger task of compositional
generalization, and construct a complexity hierarchy of generalization tasks based on
the complexity of the learned representation of the task in terms of permutation groups
and equivariant functions.

After establishing this theoretical framework, we examine particular problems situ-
ated within this hierarchy and their learnability by ‘naïve models’—those without any
inductive bias for such required generalization. We examine the problems of identity
(G. F. Marcus 1998a) and anaphora resolution (Frank, Mathis & Badecker 2013), showing
contrary to earlier evidence that these problems are learnable by such naïve recurrent
models. We follow up this surprising empirical result, and its extension to transformer
models, with an analysis of how these networks havemanaged to acquire a generalization
previously thought beyond their grasp. We determine that, for a subset of the models
developed to solve the anaphora resolution task, these networks manage to acquire
this generalization by map reflexive inputs to an ‘elsewhere condition’ in the encoding
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space, although a full constructive account of how all these models represent their inputs
remains elusive. We then present and discuss some more powerful analytical tools, like
the tensor product decomposition networks of McCoy et al. (2020), which may help us
elucidate exactly how these small, inattentive models acquire and represent algebraic
knowledge in a generalized way.

We follow up this examination of small neural networks by examining the capa-
bility of large, pretrained models in the BERT family (Devlin et al. 2019) to acquire
distributional generalizations, following in the footsteps of Kim & Smolensky (2021)
and showing that such generalizations are indeed within the computational capacity of
transformer language models.

There of course remains a great deal of work to be done to further understand and
characterize the generalizations present in natural language as they pertain in a way
which connects to the learnability of such problems by artificial neural networks. While
our work here does propose a typological hierarchy of generalization tasks, it does not
endeavor to descriptively characterize some of the more vexing tasks posed to linguistic
neural networks today; compositionality, in its full form, remains elusive, and it remains
to be seen if we can provide a description of the structural and length generalizations
noted in Gordon et al. (2019), along with the kinds of generalizations which require the
learning of non-locally-equivariant maps. More generally, a connection between this
formal complexity hierarchy and the learnability of these problems by neural networks
has not been established. Even for neural networks without any kind of inductive bias
for solving generalization tasks, it is not clear why some tasks (like the �3 anaphora
resolution task) are solvable by inattentive recurrent models while others (like length
generalization on scan, see Lake & Baroni (2018)) seem unsolvable. When considering
models with inductive biases, like the attention mechanisms of Sutskever, Martens &
Hinton (2011) or the �-recurrent models designed by Gordon et al. (2019), the scope
of what these biases allow us to solve remains open. Empirical failures of these models
to generalize well on tasks like scan or cogs seem to indicate that something more is
required, but what that is remains unknown (Lake 2019, Gordon et al. 2019, Kim &
Linzen 2020).

Regarding the empirical results obtained here, we still do not have a constructive
characterization of how the simplest models studied in Chapter 5 manage to solve the
anaphora resolution task, although the analytical tools of McCoy et al. (2020) point in a
promising direction. Since McCoy et al. (2020) found success at modeling the encoding
representations of recurrent models with tensor-product decomposition networks, we
hope to employ such networks to provide an account of how ourmodels are representing
reflexive anaphora, or more generally how such models learn and represent data in a
way consistent with the kinds of generalization observed. More broadly, the connection
between the group-equivariant properties described in Gordon et al. (2019) and the
tensor-product representation of symbolic structures in neuralmodels (Smolensky 1990)
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has not yet been established, although the intuitive connection between the filler-role
paradigm and group-equivariant functions on input data suggests a fruitful avenue of
research. Namely, the roles described in Smolensky (1990) seem to function analogously
to the induced equivalence classes described by Gordon et al. (2019), while the fillers
seem to capture the information that is preserved under equivariant mappings of the
input domain to the output domain.

Finally, we hope to extend our analysis of the distribution generalization observed
in BERT models to better understand the robustness of the learned patterns. Firstly, we
want to more concretely understand if the observed levels of lexical generalization hold
in more complicated syntactic constructions to test the degree to which these large lan-
guage models have learned human-like generalizations on the basis of large amounts of
training data. Secondly, we want to know whether or not the displayed generalizational
capabilities arise as a result of learning a shared computational mechanism for syntactic
or structural transformations, or whether it arises as a latent property of the learned
geometry of input embeddings.
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